A previously unsuspected, considerable proportion of newly synthesized polypeptides are hydrolyzed rapidly by proteasomes, possibly competing with endogenous substrates and altering proteostasis. In view of the anti-cancer effects of PIs, we set out to achieve a quantitative assessment of proteasome workload in cells hallmarked by different PI sensitivity, namely, a panel of MM cells, and in a dynamic model of plasma cell differentiation, a process that confers exquisite PI sensitivity. Our results suggest that protein synthesis is a key determinant of proteasomal proteolytic burden and PI sensitivity. In different MM cells and in differentiating plasma cells, the average proteolytic work accomplished per proteasome ranges over different orders of magnitude, an unexpected degree of variability, with increased workload invariably associated to increased PI sensitivity. The unfavorable load-versus-capacity balance found in highly PI-sensitive MM lines is accounted for by a decreased total number of immunoproteasomes/cell coupled to enhanced generation of RDPs. Moreover, indicative of cause-effect relationships, attenuating general protein synthesis by the otherwise toxic agent CHX reduces PI sensitivity in activated B and in MM cells. Our data support the view that in plasma cells protein synthesis contributes to determine PI sensitivity by saturating the proteasomal degradative capacity. Quantitating protein synthesis and proteasome workload may thus prove crucial to design novel negative proteostasis regulators against cancer.
The specific roles that immunoproteasome variants play in MHC class I antigen presentation are unknown at present. To investigate the biochemical properties of different immunoproteasome forms and unveil the molecular mechanisms of PA28 activity, we performed in vitro degradation of full-length proteins by 20S, 26S, and PA28αβ-20S immunoproteasomes and analyzed the spectrum of peptides released. Notably, PA28αβ-20S immunoproteasomes hydrolyze proteins at the same low rates as 20S alone, which is in line with PA28, neither stimulating nor preventing entry of unfolded polypeptides into the core particle. Most importantly, binding of PA28αβ to 20S greatly reduces the size of proteasomal products and favors the release of specific, more hydrophilic, longer peptides. Hence, PA28αβ may either allosterically modify proteasome active sites or act as a selective "smart" sieve that controls the efflux of products from the 20S proteolytic chamber.
Immunoproteasomes are alternative forms of proteasomes specialized in the generation of MHC class I antigenic peptides and important for efficient cytokine production. We have identified a new biochemical property of 26S immunoproteasomes, namely the ability to hydrolyze basic proteins at greatly increased rates compared to constitutive proteasomes. This enhanced degradative capacity is specific for basic polypeptides, since substrates with a lower content in lysine and arginine residues are hydrolyzed at comparable rates by constitutive and immunoproteasomes. Crucially, selective inhibition of the immunoproteasome tryptic subunit β2i strongly reduces degradation of basic proteins. Therefore, our data demonstrate the rate limiting function of the proteasomal trypsin-like activity in controlling turnover rates of basic protein substrates and suggest new biological roles for immunoproteasomes in maintaining cellular homeostasis by rapidly removing a potentially harmful excess of free histones that can build up under different pathophysiological conditions.
Proteasome inhibitors are widely used to study the role of the ubiquitin proteasome system (UPS) in various cellular processes. These drugs have been shown to be highly effective in inhibiting the chymotrypsin-like activity of purified Arabidopsis thaliana proteasomes. However, the analysis of their efficacy in vivo is currently hampered by the absence of a simple method for the quantitative determination of proteasomal activity in plant cell extracts. Previous studies have shown that quantitative methods based on the use of fluorogenic peptides cannot be directly applied to plant homogenates, due to the presence of interfering proteases with cleavage specificities similar to that of the proteasome. To overcome this, we developed a simple and rapid fractionation procedure that efficiently separates most of the non-proteasomal chymotryptic enzymes, such that proteasome activity can be easily measured. We go on to demonstrate that in vivo treatment of tobacco protoplasts with high concentrations of three potent proteasome inhibitors can only partially suppress proteasomal chymotrypsin-like activity, resulting in the incomplete stabilisation of the protein toxin ricin A chain (RTA), a known endoplasmic reticulum-associated degradation (ERAD) substrate that normally undergoes extensive cytosolic degradation. We therefore conclude that negative results obtained using proteasome inhibitors in tobacco protoplasts and possibly other types of plant cells should be interpreted with a degree of caution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.