Objective An individual’s birth month has a significant impact on the diseases they develop during their lifetime. Previous studies reveal relationships between birth month and several diseases including atherothrombosis, asthma, attention deficit hyperactivity disorder, and myopia, leaving most diseases completely unexplored. This retrospective population study systematically explores the relationship between seasonal affects at birth and lifetime disease risk for 1688 conditions.Methods We developed a hypothesis-free method that minimizes publication and disease selection biases by systematically investigating disease-birth month patterns across all conditions. Our dataset includes 1 749 400 individuals with records at New York-Presbyterian/Columbia University Medical Center born between 1900 and 2000 inclusive. We modeled associations between birth month and 1688 diseases using logistic regression. Significance was tested using a chi-squared test with multiplicity correction.Results We found 55 diseases that were significantly dependent on birth month. Of these 19 were previously reported in the literature (P < .001), 20 were for conditions with close relationships to those reported, and 16 were previously unreported. We found distinct incidence patterns across disease categories.Conclusions Lifetime disease risk is affected by birth month. Seasonally dependent early developmental mechanisms may play a role in increasing lifetime risk of disease.
This study present a semi-automated data-driven approach to developing a semantic network that aligns well with the top-level information structure in clinical research eligibility criteria text and demonstrates the feasibility of using the resulting semantic role labels to generate semistructured eligibility criteria with nearly perfect interrater reliability.
Understanding how drugs affect the immune system has consequences for treating disease and minimizing unwanted side effects. Here we present an integrative computational approach for predicting interactions between drugs and immune cells in a system-wide manner. The approach matches gene sets between transcriptional signatures to determine their similarity. We apply the method to model the interactions between 1,309 drugs and 221 immune cell types and predict 69,995 known and novel interactions. The resulting immune-cell pharmacology map is used to predict how 5 drugs influence 4 immune cell types in humans and mice. To validate the predictions, we analyzed patient records and examined cell population changes from in vivo experiments. Our method offers a tool for screening thousands of interactions to identify relationships between drugs and the immune system.
Objectives We propose a one-shot, privacy-preserving distributed algorithm to perform logistic regression (ODAL) across multiple clinical sites. Materials and Methods ODAL effectively utilizes the information from the local site (where the patient-level data are accessible) and incorporates the first-order (ODAL1) and second-order (ODAL2) gradients of the likelihood function from other sites to construct an estimator without requiring iterative communication across sites or transferring patient-level data. We evaluated ODAL via extensive simulation studies and an application to a dataset from the University of Pennsylvania Health System. The estimation accuracy was evaluated by comparing it with the estimator based on the combined individual participant data or pooled data (ie, gold standard). Results Our simulation studies revealed that the relative estimation bias of ODAL1 compared with the pooled estimates was <3%, and the ratio of standard errors was <1.25 for all scenarios. ODAL2 achieved higher accuracy (with relative bias <0.1% and ratio of standard errors <1.05). In real data analysis, we investigated the associations of 100 medications with fetal loss during pregnancy. We found that ODAL1 provided estimates with relative bias <10% for 85% of medications, and ODAL2 has relative bias <10% for 99% of medications. For communication cost, ODAL1 requires transferring p numbers from each site to the local site and ODAL2 requires transferring (p×p+p) numbers from each site to the local site, where p is the number of parameters in the regression model. Conclusions This study demonstrates that ODAL is privacy-preserving and communication-efficient with small bias and high statistical efficiency.
Small molecules are indispensable to modern medical therapy. However, their use may lead to unintended, negative medical outcomes commonly referred to as adverse drug reactions (ADRs). These effects vary widely in mechanism, severity, and populations affected, making ADR prediction and identification important public health concerns. Current methods rely on clinical trials and post-market surveillance programs to find novel ADRs; however, clinical trials are limited by small sample size, while post-market surveillance methods may be biased and inherently leave patients at risk until sufficient clinical evidence has been gathered. Systems pharmacology, an emerging interdisciplinary field combining network and chemical biology, provides important tools to uncover and understand ADRs and may mitigate the drawbacks of traditional methods. In particular, network analysis allows researchers to integrate heterogeneous data sources and quantify the interactions between biological and chemical entities. Recent work in this area has combined chemical, biological, and large-scale observational health data to predict ADRs in both individual patients and global populations. In this review, we explore the rapid expansion of systems pharmacology in the study of ADRs. We enumerate the existing methods and strategies and illustrate progress in the field with a model framework that incorporates crucial data elements, such as diet and comorbidities, known to modulate ADR risk. Using this framework, we highlight avenues of research that may currently be underexplored, representing opportunities for future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.