This report describes a Ts costimulator assay and its use to analyze cofactors required for the expression of suppressor T cell function. Activation of primed MLR-Ts (alloantigen-activated suppressor T cells suppressive of mixed leukocyte reaction) to suppressor T cell factor (TsF) production typically fails in the presence of glutaraldehyde-fixed rather than irradiated allogeneic stimulator cells. However, MLR-TsF production was restored by the addition of 48-h primary MLR supernates; MLR-derived Ts costimulator neither activated primed MLR-Ts in the absence of fixed allogeneic stimulators nor directly suppressed assay MLR. Lack of antigen specificity or genetic restriction and failure to activate unprimed MLR-Ts precursors suggested that Ts costimulator activity differed from previously described Ts inducer functions and was more closely aligned with the lymphocyte- or monocyte-derived interleukins (IL). Three findings distinguished Ts costimulator from IL-2. Depletion of IL-2 activity from MLR supernates by HT2 adsorption failed to affect Ts costimulator function. In addition, MLR supernates prepared in the presence of cyclosporin A contained no IL-2 but expressed Ts costimulator activity. Finally, gel chromatography demonstrated Ts costimulator in peaks of 21,000 and 43,000 mol wt that were largely distinct from the IL-2-containing fractions. Ts costimulator activity was also identified in phorbol myristate acetate (PMA)-induced EL4 supernates and was retained in those supernates after IL-2 depletion by HT2 adsorption. In preliminary functional characterization, MLR supernate-derived Ts costimulator triggered MLR-TsF production from irradiated MLR-Ts in the absence of proliferation. Thus a differentiative rather than proliferative stimulus required for primed MLR-Ts function appears to be provided by this Ts costimulator and has been provisionally termed Ts differentiative factor ( TsDF ). This initial characterization may thus identify one of a possibly distinctive family of interleukins required in the alloantigen-driven activation of suppressor T cells to effector function.
Previous studies have identified a lymphokine, termed Ts differentiation factor (TsDF), in primary MLR supernatants that induces effector function of alloantigen-primed MLR-Ts. The present report describes constitutive production of TsDF by the murine thymoma BW5147, and its use to analyze alloantigen and TsDF requirements for MLR-Ts activation to TsF production. Serum-free supernatants of BW5147 restored the capacity of MLR-TsF production to alloantigen-primed MLR-Ts cultured with glutaraldehyde-fixed allogeneic stimulator cells, and were not themselves directly suppressive in the MLR assay. BW5147 supernatant induced MLR-TsF production from primed L3T4-Ly2+ MLR-Ts in the absence of concomitant proliferation, suggesting that the function of BW5147 supernatant, like that of MLR-derived TsDF, is a differentiative rather than a proliferative one, and is required for the synthesis or release of TsF. The differentiative activity of BW5147 supernatant was associated with a molecular species of approximately 14,500 m.w. by HPLC fractionation and was expressed independently of detectable IL 2, IL 3, IFN-gamma, and IL 1. The functional activity of BW5147 supernatant has therefore been provisionally designated BW5147-derived Ts differentiative factor, or BW-TsDF. By using BW-TsDF, it was demonstrated that MLR-Ts fail to respond to TsDF in the absence of, or preceding, reexposure to priming alloantigen. Instead, alloantigen binding by primed MLR-Ts appears to create a transient state of TsDF responsiveness. Primed MLR-Ts were fully sensitive to delayed addition of TsDF for approximately 12 hr after reexposure to alloantigen, but became TsDF-unresponsive within 24 to 36 hr. MLR-Ts cultured alone for 36 hr were fully responsive to the combined addition of TsDF and alloantigen. Thus, MLR-Ts activation to TsF release requires the sequential events of specific alloantigen binding, which induces a TsDF-responsive state, followed by interaction with TsDF. The transience of induced TsDF responsiveness suggests a precise mechanism for control of antigen-initiated Ts activation to effector function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.