Age-related cognitive impairment is multifactorial, with numerous underlying and frequently co-morbid pathological correlates. Amyloid beta (Aβ) plays a major role in Alzheimer’s type age-related cognitive impairment, in addition to other etiopathologies such as Aβ-independent hyperphosphorylated tau, cerebrovascular disease, and myelin damage, which also warrant further investigation. Classical methods, even in the setting of the gold standard of postmortem brain assessment, involve semi-quantitative ordinal staging systems that often correlate poorly with clinical outcomes, due to imperfect cognitive measurements and preconceived notions regarding the neuropathologic features that should be chosen for study. Improved approaches are needed to identify histopathological changes correlated with cognition in an unbiased way. We used a weakly supervised multiple instance learning algorithm on whole slide images of human brain autopsy tissue sections from a group of elderly donors to predict the presence or absence of cognitive impairment (n = 367 with cognitive impairment, n = 349 without). Attention analysis allowed us to pinpoint the underlying subregional architecture and cellular features that the models used for the prediction in both brain regions studied, the medial temporal lobe and frontal cortex. Despite noisy labels of cognition, our trained models were able to predict the presence of cognitive impairment with a modest accuracy that was significantly greater than chance. Attention-based interpretation studies of the features most associated with cognitive impairment in the top performing models suggest that they identified myelin pallor in the white matter. Our results demonstrate a scalable platform with interpretable deep learning to identify unexpected aspects of pathology in cognitive impairment that can be translated to the study of other neurobiological disorders.
Despite the plethora of studies discussing the benefits of vitamin D on physiological functioning, few mathematical models of vitamin D predict the response of the body on low-concentration supplementation of vitamin D under sunlight-restricted conditions. This study developed a physiologically based pharmacokinetic (PBPK) model utilizing published human data on the metabolic cascade of orally derived, low-concentration (placebo, 5 μg and 10 μg) supplementation of vitamin D over the course of 28 days in the absence of sunlight. Vitamin D and its metabolites are highly lipophilic and binding assays of these compounds in serum may not account for binding by lipids and additional proteins. To compensate for the additional bound amounts, this study allowed the effective adipose-plasma partition coefficient to vary dynamically with the concentration of each compound in serum utilizing the Hill equation for binding. Through incorporating the optimized parameters with the adipose partition coefficient adaptation to the PBPK model, this study was able to fit serum concentration data for circulating vitamin D at all three supplementation concentrations within confidence intervals of the data. Copyright © 2017 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.