Complementary DNA clones encoding mouse cytokine synthesis inhibitory factor (CSIF; interleukin-10), which inhibits cytokine synthesis by TH1 helper T cells, were isolated and expressed. The predicted protein sequence shows extensive homology with an uncharacterized open reading frame, BCRFI, in the Epstein-Barr virus genome, suggesting the possibility that this herpes virus exploits the biological activity of a captured cytokine gene to enhance its survival in the host.
B lymphocyte differentiation is characterized by an ordered series of Ig gene assembly and expression events. In the majority of normal B cells, assembly and expression of Ig heavy (H) chain genes precedes that of light (L) chain genes. To determine the role of the Ig heavy chain protein in B cell development and L chain gene rearrangement, we have generated mice that cannot assemble Ig H chain genes as a result of targeted deletion of the JH gene segments in embryonic stem cells. Mice homozygous for this deletion are devoid of slg+ B cells in the bone marrow and periphery. B cell differentiation in these mice is blocked at the large, CD43+ precursor stage. However, these precursor B cells do assemble kappa L chain genes at a low level in the absence of mu H chain proteins. These data demonstrate that rearrangement and expression of the mu H chain gene is not absolutely required for kappa L chain gene rearrangement in vivo. Expression of mu chains may facilitate either efficient L chain gene rearrangement or the survival of cells that have rearranged light chain genes by promoting the differentiation of large, CD43+ to small, CD43- pre-B cells.
Human sequence monoclonal antibodies, which in theory combine high specificity with low immunogenicity, represent a class of potential therapeutic agents. But nearly 20 years after Köhler and Milstein first developed methods for obtaining mouse antibodies, no comparable technology exists for reliably obtaining high-affinity human antibodies directed against selected targets. Thus, rodent antibodies, and in vitro modified derivatives of rodent antibodies, are still being used and tested in the clinic. The rodent system has certain clear advantages; mice are easy to immunize, are not tolerant to most human antigens, and their B cells form stable hybridoma cell lines. To exploit these advantages, we have developed transgenic mice that express human IgM, IgG and Ig kappa in the absence of mouse IgM or Ig kappa. We report here that these mice contain human sequence transgenes that undergo V(D)J joining, heavy-chain class switching, and somatic mutation to generate a repertoire of human sequence immunoglobulins. They are also homozygous for targeted mutations that disrupt V(D)J rearrangement at the endogenous heavy- and kappa light-chain loci. We have immunized the mice with human proteins and isolated hybridomas secreting human IgG kappa antigen-specific antibodies.
We have generated mice that lack the ability to produce immunoglobulin (Ig) kappa light chains by targeted deletion of J kappa and C kappa gene segments and the intervening sequences in mouse embryonic stem cells. In wild type mice, approximately 95% of B cells express kappa light chains and only approximately 5% express lambda light chains. Mice heterozygous for the J kappa C kappa deletion have approximately 2‐fold more lambda+ B cells than wild‐type littermates. Compared with normal mice, homozygous mutants for the J kappa C kappa deletion have about half the number of B cells in both the newly generated and the peripheral B cell compartments, and all of these B cells express lambda light chains in their Ig. Therefore, homozygous mutant mice appear to produce lambda‐expressing cells at nearly 10 times the rate observed in normal mice. These findings demonstrate that kappa gene assembly and/or expression is not a prerequisite for lambda gene assembly and expression. Furthermore, there is no detectable rearrangement of 3′ kappa RS sequences in lambda+ B cells of the homozygous mutant mice, thus rearrangements of these sequences, per se, is not required for lambda light chain gene assembly. We discuss these findings in the context of their implications for the control of Ig light chain gene rearrangement and potential applications of the mutant animals.
SummaryThe genetic organization of the g and X light chain loci permits multiple, successive rearrangement attempts at each allele. Multiple rearrangements allow autoreactive B cells to escape clonal deletion by editing their surface receptors. Editing may also facilitate efficient B cell production by salvaging cells with nonproductive light chain (L chain) rearrangements. To study receptor editing of g L chains, we have characterized B cells from mice hemizygous for the targeted inactivation of g (JCkD/wt) which have an anti-DNA heavy chain transgene, 3H9. Hybridomas from JCkD/wt mice exhibited an increased frequency of rearrangements to downstream Jk segments (such as Jk5) compared with most surveys from normal mice, consistent with receptor editing by sequential g locus rearrangements in JCkD/wt. We observed an even higher frequency of rearrangements to Jk5 in 3H9 JCkD/wt animals compared with nontransgenic JCkD/wt, consistent with editing of autoreactive g in 3H9 JCkD/wt. We also recovered a large number of 3H9 JCkD/wt lines with Vk12/13-Jk5 rearrangements and could demonstrate by PCR and Southern analysis that up to three quarters of these lines underwent multiple g rearrangements. To investigate editing at the X locus, we used homozygous g-deficient animals (JCkD/JCkD and 3H9 JCkD/JCkD). The frequencies of VX1 and VX2 rearrangement s among splenic hybridomas in 3H9 JCkD/JCkD were reduced by 75% whereas VXX was increased 5-10-fold, compared with nontransgenic JCkD/JCkD animals. This indicates that VX1 and VX2 are negatively regulated in 3H9 JCkD/JCkD, consistent with earlier studies that showed that the 3H9 heavy chain, in combination with X1 binds DNA. As successive )X rearrangements to VXX do not inactivate V~,I, the consequence of ~, editing in 3H9 JCkD/JCkD would be failed allelic exclusion at X. However, analysis of 18 3H9 JCkD/JCkD hybridomas with V)xl and VXX DNA rearrangements revealed that most of these lines do not have productive X1 rearrangements. In sum, both g and X loci undergo editing to recover from nonproductive rearrangement, but only g locus editing appears to play a substantial role in rescuing autoreactive B cells from deletion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.