In order to investigate the effects of foliar application of amino acid and calcium chelate on "Golden Delicious" and "Granny smith" apple trees, a randomized complete block design with four repetitions was conducted. Apple trees were sprayed with (0, 2, 4 mg L -1 ) of amino acid and (0, 2, 4 mg L -1 ) calcium chelate and their combination. Fruit weight, fruit firmness, total soluble solids, titretable acidity and calcium content of fruits were determined. All the applied treatments significantly increased quality and quantity traits compared to the control trees in both cultivars. The combination of amino acid and calcium chelate increased weight of both cultivars. Thus, in this study combination of amino acid and calcium chelate foliar spray treatment could be recommended from results as they significantly increased quality and quantity traits of "Golden delicious" and "Granny smith" apple trees.
Application of nutrients as nanoparticle (NP) is an operative manner of nutrient supply for plants, especially under stress conditions. The present study was designed to highlight the role of iron NP on drought tolerance and elucidate the underlying mechanisms in drought-stressed canola plants. Drought stress was imposed by polyethylene glycol different concentrations (0, 10 and 15% (W/V)) with or without iron NP (1.5 and 3 mg/l). A comparative study of several physiological and biochemical parameters have been carried out in canola plants treated by drought and iron NP. Stressed-canola plants showed a reduction in growth parameters, whereas iron NP mostly stimulated growth of stressed plants, which was accompanied by reinforcement in defense mechanisms. Regarding impacts on compatible osmolytes, the data revealed that iron NP was able to regulate osmotic potential by increasing protein, proline and soluble sugar contents. The iron NP application was activated the enzymatic defense system (catalase and polyphenol oxidase) and promoted the non-enzymatic antioxidants (phenol, flavonol and flavonoid). Both of these adaptive responses declined free radicals as well as lipid peroxidation and enhanced the membrane stability and drought tolerance of the plants. Enhanced chlorophyll accumulation via induction of protoporphyrin, magnesium protoporphyrin and protochlorophyllide, by iron NP also contributed towards better stress tolerance. Enzymes of Krebs cycle, namely succinate dehydrogenase and aconitase, were induced by iron NP in canola plants grown under drought stress. These results propose a multifaceted involvement of iron NP, through regulation of activity of respiratory enzymes and antioxidant enzymes, production of reactive oxygen species, osmoregulation and secondary metabolites metabolism, in response to drought stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.