Achieving good recognition results for License plates is challenging due to multiple adverse factors. For instance, in Malaysia, where private vehicle (e.g., cars) have numbers with dark background, while public vehicle (taxis/cabs) have numbers with white background. To reduce the complexity of the problem, we propose to classify the above two types of images such that one can choose an appropriate method to achieve better results. Therefore, in this work, we explore the combination of Convolutional Neural Networks (CNN) and Recurrent Neural Networks namely, BLSTM (Bi-Directional Long Short Term Memory), for recognition. The CNN has been used for feature extraction as it has high discriminative ability, at the same time, BLSTM has the ability to extract context information based on the past information. For classification, we propose Dense Cluster based Voting (DCV), which separates foreground and background for successful classification of private and public. Experimental results on live data given by MIMOS, which is funded by Malaysian Government and the standard dataset UCSD show that the proposed classification outperforms the existing methods. In addition, the recognition results show that the recognition performance improves significantly after classification compared to before classification.
Arbitrary moving object detection including vehicles and human beings in the real environment, such as protected and sensitive areas, is challenging due to arbitrary deformation and directions caused by Shakey camera and wind. This work aims at adopting a Spatio-temporal approach for classifying arbitrarily moving objects. The proposed method segments foreground objects from the background using the frame difference between the median frame and individual frames. This step outputs several different foreground information. The mean of foreground images is computed, which is referred to as the mean activation map. For the mean activation map, the method employs the Fast Fourier Transform (FFT), which outputs amplitude and frequencies. The mean of frequencies is computed for moving objects in using activation maps of temporal frames, which is considered as a frequency feature vector. The features are normalized to avoid the problems of imbalanced features and class sizes. For classification, the work uses 10-fold cross-validation to choose the number of training and testing samples and the random forest classifier is used for the final classification of arbitrary moving and static videos. For evaluating the proposed method, we construct our dataset, which contains videos of static and arbitrarily moving objects caused by shaky cameras and wind. The results on the video dataset show that the proposed method achieves the state-of-the-art performance.
Classification of arbitrary moving objects including vehicles and human beings in a real environment (such as protected and sensitive areas) is challenging due to arbitrary deformation and directions caused by shaky camera and wind. This work aims at adopting a spatiotemporal approach for classifying arbitrarily moving objects. The intuition to propose the approach is that the behavior of the arbitrary moving objects caused by wind and shaky camera is inconsistent and unstable, while, for static objects, the behavior is consistent and stable. The proposed method segments foreground objects from background using the frame difference between median frame and individual frame. This step outputs several different foreground information. The method finds static and dynamic edges by subtracting Canny of foreground information from the Canny edges of respective input frames. The ratio of the number of static and dynamic edges of each frame is considered as features. The features are normalized to avoid the problems of imbalanced feature size and irrelevant features. For classification, the work uses 10-fold cross-validation to choose the number of training and testing samples, and the random forest classifier is used for the final classification of frames with static objects and arbitrarily moving objects. For evaluating the proposed method, we construct our own dataset, which contains video of static and arbitrarily moving objects caused by shaky camera and wind. The results on the video dataset show that the proposed method achieves the state-of-the-art performance (76% classification rate) which is 14% better than the best existing method.
Classification of arbitrary moving objects including vehicles and human beings in a real environment (such as protected and sensitive areas) is challenging due to arbitrary deformation and directions caused by shaky camera and wind. This work aims at adopting a spatio-temporal approach for classifying arbitrarily moving objects. The intuition to propose the approach is that the behavior of the arbitrary moving objects caused by wind and shaky camera are inconsistent and unstable while for static objects, the behavior is consistent and stable. The proposed method segments foreground objects from background using the frame difference between median frame and individual frame. This step outputs several different foreground information. The method finds static and dynamic edges by subtracting Canny of foreground information from the Canny edges of respective input frames. The ratio of the number of static and dynamic edges of each frame is considered as features. The features are normalized to avoid the problems of imbalanced feature size and irrelevant features. For classification, the work uses 10-fold cross-validation to choose the number of training and testing samples and the random forest classifier is used for the final classification of frames with static objects and arbitrary movement objects. For evaluating the proposed method, we construct our own dataset, which contains video of static and arbitrarily moving objects caused by shaky camera and wind. The results on the video dataset show that the proposed method achieves the state-of-the-art performance (76% classification rate) which is 14% better than the best existing method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.