Rapamycin is an immunosuppressive agent routinely used in organ transplantation, but also paradoxically, exerts antiviral and anti-tumor activities. Pathogen-specific memory CD8+ T cell (TCD8) responses were recently found to be augmented by rapamycin. However, whether rapamycin influences the magnitude and quality of anticancer TCD8 responses is unknown. Importantly, how rapamycin may regulate simultaneous virus/tumor-specific and alloreactive TCD8 in the same host remains unexplored. To answer these questions, we primed wild-type mice with allogeneic cells concomitantly expressing simian virus 40 large tumor antigen (T Ag), a viral oncoprotein with well-defined epitopes. Rapamycin selectively enhanced the cross-priming of TCD8 specific for T Ag’s most immunodominant epitope called site IV but not TCD8 alloreactivity. Rapamycin-treated mice also had a high percentage of splenic CD127highKLRG1low TCD8 as well as an increased frequency of site IV-specific T cells long after the peak of their primary response. When site IV was presented as a cytosolic minigene encoded by a recombinant vaccinia virus, rapamycin failed to boost the site IV-specific response. Therefore, the nature and presentation mode of antigen determine the susceptibility to the adjuvant effect of rapamycin. Our findings reveal the unexpected benefit of rapamycin treatment in recipients of allografts co-expressing tumor/viral Ags.
Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-degrading enzyme known to suppress antitumor CD8+ T cells (TCD8). The role of IDO in regulation of antiviral TCD8 responses is far less clear. In addition, whether IDO controls both immunodominant and subdominant TCD8 is not fully understood. This is an important question because the dominance status of tumor- and virus-specific TCD8 may determine their significance in protective immunity and in vaccine design. We evaluated the magnitude and breadth of cross-primed TCD8 responses to simian virus 40 (SV40) large T antigen as well as primary and recall TCD8 responses to influenza A virus (IAV) in the absence or presence of IDO. IDO−/− mice and wild-type mice treated with 1-methyl-D-tryptophan, a pharmacological inhibitor of IDO, exhibited augmented responses to immunodominant epitopes encoded by T antigen and IAV. IDO-mediated suppression of these responses was independent of CD4+CD25+FoxP3+ regulatory T cells, which remained numerically and functionally intact in IDO−/− mice. Treatment with L-kynurenine failed to inhibit TCD8 responses, indicating that tryptophan metabolites are not responsible for the suppressive effect of IDO in our models. Immunodominant T antigen-specific TCD8 from IDO−/− mice showed increased Ki-67 expression, suggesting that they may have acquired a more vigorous proliferative capacity in vivo. In conclusion, IDO suppresses immunodominant TCD8 responses to tumor and viral antigens. Our work also demonstrates that systemic primary and recall TCD8 responses to IAV are controlled by IDO. Inhibition of IDO thus represents an attractive adjuvant strategy in boosting anticancer and antiviral TCD8 targeting highly immunogenic antigens.
Enterohaemorrhagic Escherichia coli O157:H7 are zoonotic pathogens associated with haemorrhagic colitis (HC) and the haemolytic uremic syndrome (HUS).Ruminants are the main reservoir of this organism and most outbreaks of E. coli O157:H7 infections are food borne. Food contamination by ruminant manure has been reported as the primary source of human infection, therefore inhibition of E. coli O157:H7 colonization and shedding in ruminants could control the risk of human exposure to this pathogen. In the present study a vaccine based on the translocon proteins EspA and EspB and the outer membrane adhesion factor intiminγ significantly reduced faecal shedding of E. coli O157:H7 by orally infected sheep.Protection correlates with serum antibody responses to the defined antigens and validates the targeting of these colonization factors. Preliminary studies on the mechanism of this immune response shows presence of antigen-specific IgG antibody secreting cells in the mucosae of the small intestine. Whereas vaccination has already been described in cattle, this is the first study describing a significant decrease in faecal shedding following systemic immunization of sheep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.