The appearance and dissemination of penicillin resistant and macrolide resistant Streptococcus pneumoniae strains has caused increasing concern worldwide. The aim of this study was to survey drug resistance and genetic characteristics of macrolide and penicillin resistance in S. pneumoniae. This is a cross-sectional study, which was carried out on 70 samples suspected to be S. pneumoniae isolated from patients who were admitted in Intensive Care Unit (ICU) of southwest of Iran, in 2010 and 2011. At first, suspected colonies were identified by phenotypic and chemical tests. The isolates were confirmed as S. pneumoniae based on the presence of lytA gene by polymerase chain reaction (PCR) method. Antibiotic resistance was evaluated according to Standard Clinical and Laboratory Standards Institute (CLSI). Minimum inhibitory concentrations (MICs) of erythromycin and penicillin were determined by the E-test method. Molecular analyses of macrolide and penicillin resistance were carried out by using specific primers for detection of the resistance gene including erm(B), mef(A), pbp1a, pbp2b and pbp2x genes. The lytA gene was detected in 50 samples. There was prevalence of resistant strains to erythromycin (56%), penicillin (40%), ampicillin (56%), cefotaxime (50%), tetracycline (10%), trimethoprim-sulfamethoxazole (48%), nalidixic acid (16%), clarithromycin (48%), azithromycin (44%) and levofloxacin (4%). All strains were susceptible to chloramphenicol, amikacin, streptomycin and gentamicin. Gene analysis showed that 29 strains (58%) had mef(A) gene, and 24 strains (48%) had the erm(B) gene. Out of all the penicillin resistance and intermediate strains, 6 (20%) and 1 (3.33%) strains harbor mutations in pbp1a and pbp2x genes, respectively, but pbp2b was not identified in any sample. Resistance to penicillin, trimethoprim-sulfamethoxazole, clarithromycin and azithromycin in S. pneumoniae is a serious problem in this area and the local pattern of resistance/susceptibility must be considered for therapeutic regimens. The mef(A) gene was a predominant mechanism of macrolide resistance in this area. With regards to low frequency of pbps resistance genes, monitoring of other kinds of mechanisms is recommended.
To determine the 23S rRNA point mutations in clarithromycin resistance of Helicobacter pylori strains isolated from southwest, Iran. This was a cross-sectional survey, which was done on 263 patients who referred to endoscopy department of Shehrekord university of medical sciences. According to gram stain, urease, catalase, oxidase and polymerase chain reaction (PCR) H. pylori identified. Standard National Committee for Clinical Laboratory Standard (NCCLS) method used for assessment of clarithromycin resistance. Specific primers and restriction enzymes BsaI and MboII by PCR-RFLP were used for analysis of A2143G and A2142G mutations. So for the detection of A2142C, specific primers and PCR method were used. 84 strains of H. pylori (31.94%) determined by PCR method. Of 19 (22.62%) clarithromycin resistant strains 13 (68.40%), 3 (15.78%), 2 (10.52%) had A2143G, A2142G, A2142C respectively and one unknown mutation in 23S rRNA gene. Because of considerable resistance to clarithromycin, direct diagnosis of this mutation by molecular approach in other parts of the country is necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.