Background
Insulin resistance is associated with prediabetes and further progression to type 2 diabetes mellitus (T2DM). This study aims to investigate novel hepatic lncRNAs associated with key genes in insulin resistance in prediabetes.
Methods
In the bioinformatics phase, we have collected screened a pool of lncRNAs and mRNAs according to their potential association to prediabetic condition. We performed pathway analysis of mRNAs, using DAVID tool based on KEGG repository data. Then, we used Python programming language to get a subset of lncRNAs located in 50 kb proximity with high-fat (HF)-responsive mRNAs. In the experimental phase, prediabetic mice model was established by the treatment of HF diets for 12 weeks. After this treatment, HF-fed animals were divided into two groups of endurance exercised or sedentary, both continuing on the HF diet for 8 weeks. Besides, a group of diabetic mice was treated using a HF diet for 8 weeks followed by injection with STZ solution and then a HF diet for another 4 weeks.
Results
We found three genes having paired lncRNAs annotated in insulin resistance pathway. Their hepatic expression levels were altered in prediabetic condition as upregulation of Srebf1 was associated with GM38501, upregulation of Pck1 was associated with Ctcflos and GM36691, downregulation of Cpt1b was associated with GM44502. All of these expression patterns were replicated in diabetic mice, correlated positively with their predicted lncRNAs. Interestingly, exercise reversed their expression patterns.
Conclusions
We suggest that the expression pattern of the hepatic mRNA-lncRNA (HML) network in prediabetic state undergoes similar modification to that of diabetes.
Background
Metabolic associated fatty liver disease (MAFLD) is a complex disease that results from the accumulation of fat in the liver. MAFLD is directly associated with obesity, insulin resistance, diabetes, and metabolic syndrome. PPAR
γ
ligands, including pioglitazone, are also used in the management of this disease. Noncoding RNAs play a critical role in various diseases such as diabetes, obesity, and liver diseases including MAFLD. However, there is no adequate knowledge about the translation of using these ncRNAs to the clinics, particularly in MAFLD conditions. The aim of this study was to identify ncRNAs in the etiology of MAFLD as a novel approach to the therapeutic targets.
Methods
We collected human and mouse MAFLD gene expression datasets available in GEO. We performed pathway enrichment analysis of total mRNAs based on KEGG repository data to screen the most potential pathways in the liver of MAFLD human subjects and mice model, and analyzed pathway interconnections via ClueGO. Finally, we screened disease causality of the MAFLD ncRNAs, which were associated with PPARs, and then discussed the role of revealed ncRNAs in PPAR signaling and MAFLD.
Results
We found 127 ncRNAs in MAFLD which 25 out of them were strongly validated before for regulation of PPARs. With a polypharmacology approach, we screened 51 ncRNAs which were causal to a subset of diseases related to MAFLD.
Conclusion
This study revealed a subset of ncRNAs that could help in more clear and guided designation of preclinical and clinical studies to verify the therapeutic application of the revealed ncRNAs by manipulating the PPARs molecular mechanism in MAFLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.