Strategic management is a process of determining a business long-term objectives and the way to achieve these goals. Considering importance of strategic planning in long-term competitive power of organizations, different frameworks are proposed to formulate strategies. How to choose the best strategy is a challenging activity due to its multi criteria nature and lack of information. In this paper, a method comprised of grey DEMATEL-grey analytic network process is proposed to deal with this challenge. The proposed method considered interrelationship among factors using DEMATEL and then these relations are applied in strategy ranking by ANP. The uncertainty and lack of information is handled using grey numbers. Application of the proposed method is illustrated in an ecotourism company.
Inventory classification is a fundamental issue in the development of inventory policy that assigns each inventory item to several classes with different levels of importance. This classification is the main determinant of a suitable inventory control policy of inventory classes. Therefore, a great deal of research is done on solving this problem. Usually, the problem of inventory classification is considered in a multi-criteria and uncertain environment. The proposed method in this paper inspired by the notion of heterogeneous decision-making problems in which decision-makers deal with different types of data. To this aim, a mathematical modeling-based approach is proposed considering different types of uncertainty in classification information. Demand information is considered to be stochastic due to its time-varying nature and cost information is considered to be fuzzy due to its cognitive ambiguity. A hybrid algorithm based on chance-constrained and possibilistic programming is proposed to solve the problems. Considering the stochastic nature of demand information, solving the proposed model using the hybrid algorithm, the classification of items to three classes of extremely important, class A, moderately important, class B, and relatively unimportant, class C, items are determined along with a minimum inventory level required to deal with the stochasticity of demands information. The proposed approach is applied to a case study of classifying 51 inventory items. The obtained results assigned 22%, 39%, and 39% of the items to A, B, and C classes, respectively. Keywords Multi-criteria inventory classification Á Chance-constrained programming Á Possibilistic programming Communicated by V. Loia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.