ZnS and CdS nanoparticles were prepared by a simple microwave irradiation method under mild conditions. The obtained nanoparticles were characterized by XRD, TEM and EDX. The results indicated that high purity of nanosized ZnS and CdS was successfully obtained with cubic and hexagonal crystalline structures, respectively. The band gap energies of ZnS and CdS nanoparticles were estimated using UV-visible absorption spectra to be about 4.22 and 2.64 eV, respectively. Photocatalytic degradation of methylene blue was carried out using physical mixtures of ZnS and CdS nanoparticles under a 500-W halogen lamp of visible light irradiation. The residual concentration of methylene blue solution was monitored using UV-visible absorption spectrometry. From the study of the variation in composition of ZnS:CdS, a composition of 1:4 (by weight) was found to be very efficient for degradation of methylene blue. In this case the degradation efficiency of the photocatalyst nanoparticles after 6 h irradiation time was about 73% with a reaction rate of 3.61 × 10−3 min−1. Higher degradation efficiency and reaction rate were achieved by increasing the amount of photocatalyst and initial pH of the solution.
Zinc sulfide semiconductor nanoparticles were synthesized in an aqueous solution of polyvinyl pyrrolidone via a simple microwave irradiation method. The effect of the polymer concentration and the type of sulfur source on the particle size and dispersion of the final ZnS nanoparticle product was carefully examined. Microwave heating generally occurs by two main mechanisms: dipolar polarization of water and ionic conduction of precursors. The introduction of the polymer affects the heating rate by restriction of the rotational motion of dipole molecules and immobilization of ions. Consequently, our results show that the presence of the polymer strongly affects the nucleation and growth rates of the ZnS nanoparticles and therefore determines the average particle size and the dispersion. Moreover, we found that PVP adsorbed on the surface of the ZnS nanoparticles by interaction of the C–N and C=O with the nanoparticle’s surface, thereby affording protection from agglomeration by steric hindrance. Generally, with increasing PVP concentration, mono-dispersed colloidal solutions were obtained and at the optimal PVP concentration (5%), sufficiently small size and narrow size distributions were obtained from both sodium sulfide and thioacetamide sulfur sources. Finally, the sulfur source directly influences the reaction mechanism and the final particle morphology, as well as the average size.
Photocatalysis based on semiconductor quantum dots which utilize the solar energy can be used for the elimination of pollutants from aqueous media and applied for water purification. Degradation of dyes is a standard method to check the photocatalytic activity of any type of photocatalyst. In this paper polyvinyl pyrrolidone (PVP)-capped ZnS and CdS nanoparticles were prepared by a simple microwave irradiation method and studied in detail for their photocatalytic activity in visible range. The obtained nanoparticles were characterized by XRD, TEM, UV-Vis and EDX. The prepared PVP-capped ZnS and CdS nanoparticles have average sizes of $5.1 and 18.3 nm with cubic and hexagonal crystalline structures, respectively. PVP capped CdS nanoparticles exhibited a unique property of optical absorption in visible region with a wave length below than 460 nm followed by a clear long tail up to 700 nm and showed excellent activity toward degradation of dye under visible light illumination. The photocatalytic activity of PVP-capped CdS nanoparticles was found to be improved by mixing with appropriate amount of PVP-capped ZnS nanoprticles. From the study of variation in weight percentages of PVP-capped ZnS nanoparticles, the physical mixture with 20% of PVP-capped ZnS nanoparticles was found to be very efficient for degradation of methylene blue. In this case the degradation efficiency after 6 h illumination was about 81%.
Coating of ZnS and CdS nanoparticles with organic and inorganic materials can extend their light absorption in the visible region and their stability against photo-corrosion. Such materials could emerge as excellent photocatalysts for the elimination of pollutants from aqueous media using solar energy. In this study, PVP (polyvinyl pyrrolidone)-capped ZnS and CdS nanoparticles, ZnS/CdS and CdS/ZnS core shell nanoparticles were synthesized by microwave irradiation method and characterized using different techniques. The XRD patterns exhibited cubic and hexagonal structures for coated ZnS and CdS nanoparticles, respectively. Morphological evaluation of TEM images showed that the nanoparticles are generally spherical in shape. The UV-visible spectra confirmed a shift in the band gap of coated nanoparticles to longer or shorter wavelengths due to size and potential-well effects. The photocatalytic activity of nanoparticles toward dye degradation under visible light was found to be improved after coating. PVP-capped ZnS and CdS exhibited an enhancement in the initial methylene blue degradation efficiency by a factor of about 1.3. ZnS nanoparticles coated by CdS displayed the initial efficiency 3.2 times higher than bare ZnS. The maximum dye removal was obtained in presence of CdS/ZnS core shells which is 1.4 times more efficient than bare CdS.
Cadmium sulfide (CdS) nanocrystals were synthesized in aqueous solution of polyvinyl pyrrolidone (PVP) via the simple and rapid microwave irradiation method. It is revealed that sulfur source is a key factor in controlling the phase formation of the resulting nanocrystals. The hexagonal and cubic structure of CdS nanocrystals could be obtained with varying sulfur sources of thioacetamide and sodium sulphide respectively. The interaction mechanism of PVP with precursor ions of cadmium and sulfur sources in the preparation process was proposed. It is found that PVP compounded the CdS nanoparticles and protected them from agglomerating. With increasing of PVP concentration, the average particle size of CdS nanocrystals increased and subsequently their optical band gap decreased. At the appropriate dosage of PVP, well isolated nanoparticles with relatively narrow size distribution were obtained for both sulfur sources. Moreover the stability of CdS nanoparticles enhanced after coating with polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.