Endemic Burkitt lymphoma (eBL) is primarily found in children in equatorial regions and represents the first historical example of a virus-associated human malignancy. Although Epstein-Barr virus (EBV) infection and MYC translocations are hallmarks of the disease, it is unclear whether other factors may contribute to its development. We performed RNA-Seq on 20 eBL cases from Uganda and showed that the mutational and viral landscape of eBL is more complex than previously reported. First, we found the presence of other herpesviridae family members in 8 cases (40%), in particular human herpesvirus 5 and human herpesvirus 8 and confirmed their presence by immunohistochemistry in the adjacent non-neoplastic tissue. Second, we identified a distinct latency program in EBV involving lytic genes in association with TCF3 activity. Third, by comparing the eBL mutational landscape with published data on sporadic Burkitt lymphoma (sBL), we detected lower frequencies of mutations in MYC, ID3, TCF3 and TP53, and a higher frequency of mutation in ARID1A in eBL samples. Recurrent mutations in two genes not previously associated with eBL were identified in 20% of tumors: RHOA and cyclin F (CCNF). We also observed that polyviral samples showed lower numbers of somatic mutations in common altered genes in comparison to sBL specimens, suggesting dual mechanisms of transformation, mutation versus virus driven in sBL and eBL respectively.
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy for which there is still no effective therapy. In order to identify genetic alterations useful for a new treatment design, we used whole-exome sequencing to analyze 14 BPDCN patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program to be the most significantly undermined ( P <0.0001). In particular, twenty-five epigenetic modifiers were found mutated (e.g. ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and pathology tissue-chromatin immunoprecipitation sequencing experiments. The patients displayed enrichment in gene signatures regulated by methylation and modifiable by decitabine administration, shared common H3K27-acetylated regions, and had a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical BPDCN mouse model, established by CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5’-azacytidine and decitabine in controlling disease progression in vivo .
Epstein Barr virus (EBV) infection is commonly associated with human cancer and, in particular, with lymphoid malignancies. Although the precise role of the virus in the pathogenesis of different lymphomas is largely unknown, it is well recognized that the expression of viral latent proteins and miRNA can contribute to its pathogenetic role. In this study, we compared the gene and miRNA expression profile of two EBV-associated aggressive B non-Hodgkin lymphomas known to be characterized by differential expression of the viral latent proteins aiming to dissect the possible different contribution of such proteins and EBV-encoded miRNAs. By applying extensive bioinformatic inferring and an experimental model, we found that EBV+ Burkitt lymphoma presented with significant over-expression of EBV-encoded miRNAs that were likely to contribute to its global molecular profile. On the other hand, EBV+ post-transplant diffuse large B-cell lymphomas presented a significant enrichment in genes regulated by the viral latent proteins. Based on these different viral and cellular gene expression patterns, a clear distinction between EBV+ Burkitt lymphoma and post-transplant diffuse large B-cell lymphomas was made. In this regard, the different viral and cellular expression patterns seemed to depend on each other, at least partially, and the latency type most probably played a significant role in their regulation. In conclusion, our data indicate that EBV influence over B-cell malignant clones may act through different mechanisms of transcriptional regulation and suggest that potentially different pathogenetic mechanisms may depend upon the conditions of the interaction between EBV and the host that finally determine the latency pattern.
Currently, distinguishing between benign and malignant lymphoid proliferations is based on a combination of clinical characteristics, cyto/histomorphology, immunophenotype and the identification of well-defined chromosomal aberrations. However, such diagnoses remain challenging in 10-15% of cases of lymphoproliferative disorders, and clonality assessments are often required to confirm diagnostic suspicions. In recent years, the development of new techniques for clonality detection has allowed researchers to better characterize, classify and monitor hematological neoplasms. In the past, clonality was primarily studied by performing Southern blotting analyses to characterize rearrangements in segments of the IG and TCR genes. Currently, the most commonly used method in the clinical molecular diagnostic laboratory is polymerase chain reaction (PCR), which is an extremely sensitive technique for detecting nucleic acids. This technique is rapid, accurate, specific, and sensitive, and it can be used to analyze small biopsies as well as formalin-fixed paraffin-embedded samples. These advantages make PCR-based approaches the current gold standard for IG/TCR clonality testing. Since the completion of the first human genome sequence, there has been a rapid development of technologies to facilitate high-throughput sequencing of DNA. These techniques have been applied to the deep characterization and classification of various diseases, patient stratification, and the monitoring of minimal residual disease. Furthermore, these novel approaches have the potential to significantly improve the sensitivity and cost of clonality assays and post-treatment monitoring of B- and T-cell malignancies. However, more studies will be required to demonstrate the utility, sensitivity, and benefits of these methods in order to warrant their adoption into clinical practice. In this review, recent developments in clonality testing are examined with an emphasis on highly sensitive systems for improving diagnostic workups and minimal residual disease assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.