Environmental issues are brought up concerning the production of Portland cement. As a result, biocement serves as a reliable substitute for Portland cement in green construction projects. This study created a brand-new technique to create high-quality biocement from agricultural wastes. The technique is based on nanomaterials that improve and accelerate the "Microbially Induced Calcite Precipitation (MICP)" process, which improves the quality of the biocement produced. The mixture was further mixed with the addition of 5 mg/l of graphitic carbon nitride nanosheets (g-C3N4 NSs), alumina nanoparticles (Al2O3 NPs), or silica nanoparticles (SiO2 NPs). The cement: sand ratio was 1:3, the ash: cement ratio was 1:9, and water: cement ratio was 1:2. Cubes molds were prepared, and then cast and compacted. Subsequent de-molding, all specimens were cured in nutrient broth-urea (NBU) media until testing at 28 days. The medium was replenished at an interval of 7 days. The results show that the addition of 5 mg/l of g-C3N4 NSs with corncob ash delivered the highest “Compressive Strength” and the highest “Flexural Strength” of biocement mortar cubes of 18 and 7.6 megapascal (MPa), respectively; and an acceptable “Water Absorption” (5.42%) compared to all other treatments. This treatment delivered a “Compressive Strength”, “Flexural Strength”, and “Water Absorption” reduction of 1.67, 1.26, and 1.21 times the control (standard Portland cement). It was concluded that adding 5 mg/l of g-C3N4 NSs to the cementitious mixture enhances its properties, where the resulting biocement is a promising substitute for conventional Portland cement. Adding nanomaterials to cement reduces its permeability to ions, increasing its strength and durability. The use of these nanomaterials can enhance the performance of concrete infrastructures. The use of nanoparticles is an effective solution to reduce the environmental impact associated with concrete production.
At present, the major body of research is focused on weaning the world from fossil fuels. The problem is that the world is running out of fossil fuel. Therefore, an alternative source must be identified. The biofuels are promising alternatives. In the case of petrodiesel, a promising alternative is biodiesel production from algae. The ability of microalgae to generate large quantities of lipids with a fast growth rate made them superior biodiesel producers. Using light-emitting diodes (LEDs) as an energy source in microalgal cultivation was recently increased owing to its large spectrum, endurance, and low-energy utilization. Changes in cultivation conditions, limited capabilities of harvesting light, and self-shading of microalgae were the most important problems. Therefore, the photobiostimulation of algae using LEDs radiation led to an increase in algal growth rate which results in increased lipid production. This research investigated the influence of monochromatic LEDs on the growth of Chlorella sorokiniana microalga. At the first phase, microalgae growth and algal biomass significantly increased under red LEDs [2.3 g/L], blue LEDs [1.8 g/L], green LEDs [0.7 g/L], and white LEDs (0.6) g/L as a control, respectively. At the second phase, microalgal growth and algal biomass significantly increased under red LEDs [2.9 g/L], blue LEDs 2.3 g/L, and white LEDs (1.5) g/L as a control, respectively. The percentage of extracted oil (%) or the yield of extracted oil of microalgae was 10.38 % (white LEDs), 16.94 % (blue LEDs), and 15.55 % (red LEDs) respectively. It was concluded that the photobiostimulation of algae using LEDs led to the enhanced weight of algal biomass, therefore increased of lipids and biodiesel production. The red LEDs were the best one in terms of increasing the weight of algal biomass. The blue LEDs were the best one in terms of increasing the percentage of extracted oil. However, the green LEDs were not effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.