This study aimed to evaluate the physicochemical, structural, antioxidant and antibacterial properties of chitosan-coated (0.5 and 1% CH) nanoliposomes containing hydrolyzed protein of Spirulina platensis and its stability in simulated gastric and intestine fluids. The chitosan coating of nanoliposomes containing Spirulina platensis hydrolyzed proteins increased their size and zeta potential. The fourier transform infrared spectroscopy (FT-IR) test showed an effective interaction between the hydrolyzed protein, the nanoliposome, and the chitosan coating. Increasing the concentration of hydrolyzed protein and the percentage of chitosan coating neutralized the decreasing effect of microencapsulation on the antioxidant activity of peptides. Chitosan coating (1%) resulted in improved stability of size, zeta potential, and poly dispersity index (PDI) of nanoliposomes, and lowered the release of the hydrolyzed Spirulina platensis protein from nanoliposomes. Increasing the percentage of chitosan coating neutralized the decrease in antibacterial properties of nanoliposomes containing hydrolyzed proteins. This study showed that 1% chitosan-coated nanoliposomes can protect Spirulina platensis hydrolyzed proteins and maintain their antioxidant and antibacterial activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.