We live in the era of Intelligent Transport Systems (ITS), which is an extension of Vehicular AdHoc Networks (VANETs). In VANETs, vehicles act as nodes connected with each other and sometimes with a public station. Vehicles continuously exchange and collect information to provide innovative transportation services; for example, traffic management, navigation, autonomous driving, and the generation of alerts. However, VANETs are extremely challenging for data collection, due to their high mobility and dynamic network topologies that cause frequent link disruptions and make path discovery difficult. In this survey, various state-of-the-art data collection protocols for VANETs are discussed, based on three broad categories, i.e., delay-tolerant, best-effort, and real-time protocols. A taxonomy is designed for data collection protocols for VANETs that is essential to add precision and ease of understandability. A detailed comparative analysis among various data collection protocols is provided to highlight their functionalities and features. Protocols are evaluated based on three parametric phases. First, protocols investigation based on six necessary parameters, including delivery and drop ratio, efficiency, and recovery strategy. Second, a 4-D functional framework is designed to fit most data collection protocols for quick classification and mobility model identification, thus eradicating the need to read extensive literature. In the last, in-depth categorical mapping is performed to deep dive for better and targeted interpretation. In addition, some open research challenges for ITS and VANETs are discussed to highlight research gaps. Our work can thus be employed as a quick guide for researchers to identify the technical relevance of data collection protocols of VANETs.
Dynamic nature of Vehicular Ad-hoc Networks (VANETs) and Wireless Sensor Networks (WSN) makes them hard to deal accordingly. For such dynamicity, Machine learning (ML) approaches are considered favourable. ML can be described as the process or method of self-learning without human intervention that can assist through various tools to deal with heterogeneous data to attain maximum benefits from the network. In this paper, a quick summary of primary ML concepts are discussed along with several algorithms based on ML for WSN and VANETs. Afterwards, ML based WSN and VANETs application, open issues, challenges of rapidly changing networks and various algorithms in relation to ML models and techniques are discussed. We have listed some of the ML techniques to take additional consideration of this emergent field. A summary is given for ML techniques application with their complexities to cover on open issues to kick start further research investigation. This paper provides excellent coverage of state-of-the-art ML applications that are being used in WSN and VANETs with their comparative analysis.
Vehicular Ad-Hoc Networks (VANETs) are a challenging yet active research area. It offers a wide range of applications, including Intelligent Transport System (ITS), effective road traffic monitoring, efficient traffic flow and road safety applications. During real-time data gathering for emergency scenarios, the fixed silent segments cause a problem for smooth communication. Moreover, the critical ITS operations may be delayed due to this problem. This paper proposes a Real-Time Traffic-Aware Data Gathering Protocol (TDG) where the dynamic segmentation switching is adopted to handle the communication limitations. TDG is lightweight and dynamically designed for collecting and forwarding data packets based on current and rapid evolving traffic conditions. The primary objective is to reduce network and data communication overhead to incorporate real-time data collection time constraints. TDG implements a data aggregation scheme for data analysis to fetch information based on location, speed, vehicle id and neighbour count. Moreover, a data extraction scheme is implemented to increase data retrieval and data utilization effectiveness in an intelligent way at the base station. Extensive simulation and evaluation results validate that our proposed solution outperforms existing data gathering protocols in effectiveness, efficiency, delay, communication overhead and data transmission rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.