Abstract. In order to evaluate the contribution of polymorphisms of the adiponectin gene, ADIPOQ, to the risk of colon cancer, we conducted a case-control study of 60 colon cancer patients and 60 age, gender and ethnicity-matched controls in the Saudi population. We tested the hypothesis by analyzing the genotypes for two single nucleotide polymorphisms (SNPs), rs1501299 (G276T) and rs2241766 (T45G), in the ADIPOQ gene. In addition, the study was also designed to assess whether the two SNPs contribute to circulating adiponectin levels. We observed an increased risk of colon cancer associated with the 276T allele. The odds ratio (OR) was 2.64 [95% confidence interval (CI), 0.49-14.6]. The G allele at the T45G polymorphism was associated with a lower risk of colon cancer (OR=0.41; 95% CI, 0.19-0.86). Our results suggest that the risk of developing colon cancer may be partially explained by genetic polymorphisms in the ADIPOQ gene.
Cancer cells are altered with cell cycle genes or they are mutated, leading to a high rate of proliferation compared to normal cells. Alteration in these genes leads to mitosis dysregulation and becomes the basis of tumor progression and resistance to many drugs. The drugs which act on the cell cycle fail to arrest the process, making cancer cell non-responsive to apoptosis or cell death. Vinca alkaloids and taxanes fall in this category and are referred to as antimitotic agents. Microtubule proteins play an important role in mitosis during cell division as a target site for vinca alkaloids and taxanes. These proteins are dynamic in nature and are composed of α-β-tubulin heterodimers. β-tubulin specially βΙΙΙ isotype is generally altered in expression within cancerous cells. Initially, these drugs were very effective in the treatment of cancer but failed to show their desired action after initial chemotherapy. The present review highlights some of the important targets and their mechanism of resistance offered by cancer cells with new promising drugs from natural sources that can lead to the development of a new approach to chemotherapy.
Table of contents O1 Regulation of genes by telomere length over long distances Jerry W. Shay O2 The microtubule destabilizer KIF2A regulates the postnatal establishment of neuronal circuits in addition to prenatal cell survival, cell migration, and axon elongation, and its loss leading to malformation of cortical development and severe epilepsy Noriko Homma, Ruyun Zhou, Muhammad Imran Naseer, Adeel G. Chaudhary, Mohammed Al-Qahtani, Nobutaka Hirokawa O3 Integration of metagenomics and metabolomics in gut microbiome research Maryam Goudarzi, Albert J. Fornace Jr. O4 A unique integrated system to discern pathogenesis of central nervous system tumors Saleh Baeesa, Deema Hussain, Mohammed Bangash, Fahad Alghamdi, Hans-Juergen Schulten, Angel Carracedo, Ishaq Khan, Hanadi Qashqari, Nawal Madkhali, Mohamad Saka, Kulvinder S. Saini, Awatif Jamal, Jaudah Al-Maghrabi, Adel Abuzenadah, Adeel Chaudhary, Mohammed Al Qahtani, Ghazi Damanhouri O5 RPL27A is a target of miR-595 and deficiency contributes to ribosomal dysgenesis Heba Alkhatabi O6 Next generation DNA sequencing panels for haemostatic and platelet disorders and for Fanconi anaemia in routine diagnostic service Anne Goodeve, Laura Crookes, Nikolas Niksic, Nicholas Beauchamp O7 Targeted sequencing panels and their utilization in personalized medicine Adel M. Abuzenadah O8 International biobanking in the era of precision medicine Jim Vaught O9 Biobank and biodata for clinical and forensic applications Bruce Budowle, Mourad Assidi, Abdelbaset Buhmeida O10 Tissue microarray technique: a powerful adjunct tool for molecular profiling of solid tumors Jaudah Al-Maghrabi O11 The CEGMR biobanking unit: achievements, challenges and future plans Abdelbaset Buhmeida, Mourad Assidi, Leena Merdad O12 Phylomedicine of tumors Sudhir Kumar, Sayaka Miura, Karen Gomez O13 Clinical implementation of pharmacogenomics for colorectal cancer treatment Angel Carracedo, Mahmood Rasool O14 From association to causality: translation of GWAS findings for genomic medicine Ahmed Rebai O15 E-GRASP: an interactive database and web application for efficient analysis of disease-associated genetic information Sajjad Karim, Hend F Nour Eldin, Heba Abusamra, Elham M Alhathli, Nada Salem, Mohammed H Al-Qahtani, Sudhir Kumar O16 The supercomputer facility “AZIZ” at KAU: utility and future prospects Hossam Faheem O17 New research into the causes of male infertility Ashok Agarwa O18 The Klinefelter syndrome: recent progress in pathophysiology and management Eberhard Nieschlag, Joachim Wistuba, Oliver S. Damm, Mohd A. Beg, Taha A. Abdel-Meguid, Hisham A. Mosli, Osama S. Bajouh, Adel M. Abuzenadah, Mohammed H. Al-Q...
Ovarian cancer (OC) is the deadliest among all gynecological cancers. Epidemiological studies showed that obesity might influence many cancers including OC. One of the key factors that may link obesity and OC is leptin (LEP), known as an adipokine with pleiotropic effects on body homeostasis. This study aims to investigate the expression pattern of LEP, assess the methylation profiles of LEP and their associations with clinicopathological features including survival outcomes of OC patients. The protein expression of LEP was evaluated in 208 samples using both tissue microarray and immunohistochemistry techniques. The methylation profiles of LEP were measured in 63 formalin-fixed, paraffin-embedded tumor tissues by quantitative polymerase chain reaction using a MethyLight assay. Our results showed a significant association of LEP protein overexpression with several clinicopathological variables, mainly tumor subtype, LVI, age of menarche, tumor size and stage (p < 0.04). Kaplan–Meier analysis (using low expression versus high expression as a discriminator) indicated that LEP protein overexpression is a powerful positive prognosticator of both OC recurrence (DFS) and disease-specific survival (DSS) in our OC cohort (log-rank p = 0.01 and p = 0.002, respectively). This implies that patients with high LEP expression profiles live longer with less recurrence rates. Methylation analysis results demonstrated a clear association between no/low LEP protein expression pattern (38%) and LEP promoter CpG island hypermethylation (43%). Results of this study suggest that LEP is a powerful prognosticator of OC recurrence and DSS. LEP expression in OC seems to be regulated by its promoter hypermethylation through gene partial/total silencing. Further multi-institutional studies using larger cohorts are required to demystify the intricate molecular functions of this leptin-driven effects in OC pathophysiology and to accurately assess its theranostic potential and validate its prognostic/predictive power in OC onset, progression towards more effective and personalized management of OC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.