In the following text, for finite discrete X with at least two elements, nonempty countable Γ, and φ:Γ→Γ we prove the generalized shift dynamical system (XΓ,σφ) is densely chaotic if and only if φ:Γ→Γ does not have any (quasi--)periodic point. Hence the class of all densely chaotic generalized shifts on XΓ is intermediate between the class of all Devaney chaotic generalized shifts on XΓ and the class of all Li--Yorke chaotic generalized shifts on XΓ. In addition, these inclusions are proper for infinite countable Γ. Moreover we prove (XΓ,σφ) is Li--Yorke sensitive (resp. sensitive, strongly sensitive, asymptotic sensitive, syndetically sensitive, cofinitely sensitive, multi--sensitive, ergodically sensitive, spatiotemporally chaotic, Li--Yorke chaotic) if and only if φ:Γ→Γ has at least one non--quasi--periodic point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.