Data envelopment analysis is a linear programming‐based operations research technique for performance measurement of decision‐making units. In this paper, we investigate data envelopment analysis from a multiobjective point of view to compute both the efficient extreme points and the efficient facets of the technology set simultaneously. We introduce a dual multiobjective linear programming formulation of data envelopment analysis in terms of input and output prices and propose a procedure based on objective space algorithms for multiobjective linear programmes to compute the efficient frontier. We show that using our algorithm, the efficient extreme points and facets of the technology set can be computed without solving any optimization problems. We conduct computational experiments to demonstrate that the algorithm can compute the efficient frontier within seconds to a few minutes of computation time for real‐world data envelopment analysis instances. For large‐scale artificial data sets, our algorithm is faster than computing the efficiency scores of all decision‐making units via linear programming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.