BackgroundAntibiotic resistant Acinetobacter baumannii has emerged as one of the most problematic hospital acquired pathogens around the world. This study was designed to investigate the presence of antibiotic resistant A. baumannii in various hospital environments.MethodsAir, water and inanimate surface samples were taken in different wards of four hospitals and analyzed for the presence of A. baumannii. Confirmed A. baumannii isolates were analyzed for antimicrobial susceptibility and also screened for the presence of three most common OXA- type carbapenemase-encoding genes.Results
A. baumannii was detected in 11% (7/64) of air samples with the highest recovery in intensive care units (ICUs). A. baumannii was also detected in 17% (7/42) and 2% (1/42) of surface and water samples, respectively. A total of 40 A. baumannii isolates were recovered and analysis of antimicrobial susceptibility showed the highest resistance towards ceftazidime (92.5%, 37/40). 85% (34/40) and 80% (32/40) of the isolates were also resistant to imipenem and gentamicin, respectively. Resistance genes analysis showed that 77.5% (31/40) strains contained OXA-23 and 5% (2/40) strains contained OXA-24, but OXA-58 was not detected in any of the strains.ConclusionDetection of antibiotic resistant A. baumannii in various samples revealed that hospital environments could act as a potential source for transmission of A. baumannii infections especially in ICUs. These results emphasize the importance of early detection and implementation of control measures to prevent the spread of A. baumannii in hospital environments.
Introduction and objective. The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. Materials and method. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. Results. The average level of bacteria ranged from 75-1194 CFU/m 3 . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Conclusions. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.
In order to use sewage sludge (SS) composts in agriculture, it is extremely important to estimate the quality of compost products. The aim of this study was to investigate the quality of composted SS as a fertilizer and soil amendment especially in semi-arid areas. To determine the quality and agronomic value of the SS compost products, analyses on pH, electrical conductivity, organic matter content, C/N ratio, phytotoxicity, microbial load, and heavy metal content of composted anaerobically digested SS, with different proportions (1:1, 1:2, and 1:3 v/v) of green and dry plant waste, as bulking agents, were performed. The 1:2 and 1:3 mixtures of SS and green/dry plant waste were the most beneficial for composting, with final composts attaining high organic matter degradation and exhibiting low amounts of heavy metals, a relatively high germination index, and significant reduction of pathogens, suggesting the agricultural relevance of composted SS and green/dry plant waste at 1:2 and 1:3 (v/v) proportions. pH and electrical conductivity were also within the permissible limits. With respect to international standards, it appears that composted SS and green/dry plant waste at 1:2 and 1:3 proportions pose no threat to soil or plant quality if used in agriculture or land restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.