The aim of this work was to evaluate the antibacterial effect of bioactive glass nanopowders. The 58S, 63S, and 72S compositions were prepared via the sol-gel technique. Characterization techniques such as X-ray diffraction, transmission electron microscopy (TEM), Zetasizer, and X-ray fluorescent were used. The antibacterial activity was studied using Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Staphylococcus aureus. Cytotoxicity of the samples was evaluated using mouse fibroblast L929 cell line. The chemical compositions of the prepared samples were as predicted, and the particle size of the samples with an amorphous structure mainly ranged over 20-90 nm. At broth concentrations below 50 mg/mL, they showed no antibacterial activity. The 58S showed the highest antibacterial activity with the minimum bactericidal concentrations of 50 and 100 mg/mL for E. coli plus S. aureus and for P. aeruginosa, respectively. The 63S exhibited bactericidal and bacteriostatic effects on E. coli and S. aureus at concentrations of 100 and 50 mg/mL, respectively, at an minimum bactericidal concentrations of 100 mg/mL. However, 72S bioactive glass nanopowder showed no antibacterial effect. They showed no cytotoxicity. It was concluded that bioactive glass nanopowders could be considered as good candidates for the treatment of oral bone defects and root canal disinfection. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.
Background:Helicobacter pylori (H. pylori) is a spiral Gram negative bacteria that can transform to the coccoid form in adverse conditions.Objectives:The aim of this study was to determine the in vitro morphological and bactericidal effects of metronidazole, amoxicillin and clarithromycin on H. pylori.Materials and Methods:The standard strain 26695 of H. pylori was cultured on Brucella agar (BA) and the minimum inhibitory concentrations (MICs) of three antibiotics were determined by E-test method. The bacteria were exposed to antibiotics at 1/2 MIC, MIC and 2X MIC concentrations in Brucella broth (BB). Induced coccoid forms were confirmed by Gram staining and light microscopy. The viability of cells as well as the susceptibility of viable coccoids to antibiotics were examined using the flow cytometry method.Results:All of the three antibiotics at sub-MIC induced coccoid forms. The highest rates of coccoids (> 90%) were induced at 0.008 μg/mL concentration (1/2 MIC) of amoxicillin, 72 hours postexposure. Metronidazole and clarithromycin with 1/2 MIC (0.5 and 0.125 µg/mL respectively) induced lower rates of coccoid forms (60% and 40% respectively). Potent bactericidal effects on coccoids were observed with Metronidazole at 2X MIC and clarithromycin at MIC (0.25 µg/mL) (80 - 90%). Amoxicillin with MIC and 2X MIC had no bactericidal effect on coccoid forms.Conclusions:Despite the good in vitro bactericidal effect of amoxicillin on spiral forms of H. pylori, this antibiotic has little effect on induced coccoids that may develop after the inappropriate in vivo antibacterial treatment. Hence, for successful therapy, it is essential not only to eradicate the spiral forms, but to eliminate the viable coccoids.
BackgroundAntibiotic resistant Acinetobacter baumannii has emerged as one of the most problematic hospital acquired pathogens around the world. This study was designed to investigate the presence of antibiotic resistant A. baumannii in various hospital environments.MethodsAir, water and inanimate surface samples were taken in different wards of four hospitals and analyzed for the presence of A. baumannii. Confirmed A. baumannii isolates were analyzed for antimicrobial susceptibility and also screened for the presence of three most common OXA- type carbapenemase-encoding genes.Results A. baumannii was detected in 11% (7/64) of air samples with the highest recovery in intensive care units (ICUs). A. baumannii was also detected in 17% (7/42) and 2% (1/42) of surface and water samples, respectively. A total of 40 A. baumannii isolates were recovered and analysis of antimicrobial susceptibility showed the highest resistance towards ceftazidime (92.5%, 37/40). 85% (34/40) and 80% (32/40) of the isolates were also resistant to imipenem and gentamicin, respectively. Resistance genes analysis showed that 77.5% (31/40) strains contained OXA-23 and 5% (2/40) strains contained OXA-24, but OXA-58 was not detected in any of the strains.ConclusionDetection of antibiotic resistant A. baumannii in various samples revealed that hospital environments could act as a potential source for transmission of A. baumannii infections especially in ICUs. These results emphasize the importance of early detection and implementation of control measures to prevent the spread of A. baumannii in hospital environments.
Abstract. In this work, we construct time-dependent wormhole solutions in the context of f (R) theory of gravity. The background matter is considered to be traceless. By considering specific shape function and power-law expansion exact solutions for f (R) are found. The null and the weak energy conditions (NEC and WEC) are checked for wormhole solutions. It is shown that the matter threading the wormhole spacetimes with either accelerated expansion or decelerated expansion satisfies the NEC and WEC.
Introduction This study was conducted to identify the hypermucoviscosity, iron acquisition, and capsule serotypes of K. pneumoniae strains isolated from urinary tract infections among community-acquired patients (CA) and assess the frequency of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum beta-lactamases (ESBL) genes between classic and hypervirulent strains. Materials and Methods A total of 105 K. pneumoniae were isolated from CA-UTI. Demographic data related to the underlying diseases and clinical manifestations were further collected. Antibiotic resistance pattern and molecular characterization were compared among ESBL-positive, ESBL-negative, hypervirulent, and classic isolates. Results The results revealed that 52.4% of the isolates were confirmed as ESBL producers and 11 (10.5%) were considered as hypervirulent K. pneumoniae (hvKp). Ciprofloxacin and nalidixic acid were the most inactive antibiotics with resistance rates of 68.6% and 64.8%, respectively. Molecular characterization revealed that 7.6% of all the isolates carried k1 and 66.6% carried K2 genes. The most frequent ESBL gene was bla SHV 63.8%, followed by bla TEM 59.0%, and bla CTX-M 58.1%. ESBL genes were significantly more in hvKp than in cKp. Moreover, 61 (84.7%), 47 (65.2%), and 16 (22.2%) of isolates harbored qnrB, qnrS , and qnrA . ESBL genes were detected in all hvKps, and bla SHV was observed in 90.9% of hvKp ( P value= 0.048, 95%). Discussion This study reported the high frequency of antimicrobial and multidrug resistance among hvKp isolates. Coexistence of PMQR and ESBL genes in hvkp indicates the necessity to enhance the clinical knowledge and management of hvKp infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.