Background: In radiotherapy, low-energy photon beams are better adapted to the treated volume, and the use of high-energy beams can reduce hot spots in the radiation therapy. Therefore, mixing low and high energies with different ratios can control the rate of hotspots, as well as the dose distribution of the target volume.Material and Methods: The percentage depth doses (PDDs) were calculated at various depths, by using a fitted double exponential equation. Then, using quality factor equation and PDD of a 10×10 cm2 field, the amount of energy equivalent to each PDD and the value of weighting factors of 6, 18 MV energies were calculated to produce different energies. To validate the mathematical model, dosimetry of 10 MV energy was used. For this purpose, PDDs and dose Profile of 10 MV obtained from the mix were compared with ones obtained from the measurementResults: The value of weighting factor of 6 MV energy required for the 10 ×10 cm2 field to create dose distribution of 15 MV energy using 6 and 18 MV energies was obtained as equal to 0.57. Comparison of percentage depth dose curves and dose profile shows good agreement with the practical measurements of 10 MV for 10×10 cm2 field using gamma index.Conclusion: The simultaneous use of high and low photon energies with different weighting factors to achieve desirable energy makes possible the treatment of tumors located at various depths without the need for different modes of energy in the accelerator leading to a decrease in the cost of the equipment and a safer treatment of the cancerous patients.
Purpose: Ionizing radiation-absorbed doses is a crucial concern in Cone-Beam Computed Tomography (CBCT) and panoramic radiography. This study aimed to evaluate and compare the Entrance Skin Doses (ESD) of thyroid and parotid gland regions in CBCT and panoramic radiography in Yazd province, Iran. Materials and Methods: In this cross-sectional study, 332 patients were included, who were then divided into two age groups (adult and pediatric) and underwent dental CBCT and panoramic radiography. Twelve Thermoluminescence Dosimeters (TLD- GR200) were used for each patient to measure the ESD of thyroid and parotid glands. The differences between the ESD values in CBCT and panoramic examinations as well as between the adults and children groups were evaluated by one-way ANOVA and Man-Whitney tests. Results: The mean and Standard Deviation (SD) values of ESD in panoramic imaging were equal to 61 ± 4 and 290 ± 12 µGy for the thyroid and parotid glands of the adult groups, respectively. Notably, these values for CBCT were significantly higher (P<0.01), as 377 ± 139 and 1554 ± 177 µGy, respectively. Moreover, the mean ESD values in the panoramic examination were 41 ± 3 and 190 ± 16 µGy for thyroid and parotid glands for the children group, while they were 350 ± 120 and 990 ± 107 µGy in CBCT (P<0.01), respectively. The ESD values in the parotid gland were approximately 3.4 (2.8-4.1) and 4.7 (4.6-4.8) times greater than those for CBCT and panoramic examinations, respectively. Conclusion: Although CBCT provides supplementary diagnostic advantages, the thyroid and parotid glands’ doses are higher than panoramic radiography. Therefore, the risks and benefits of each method should be considered before their prescription.
Background: In radiotherapy, low-energy photon beams are better adapted to the treated volume, and the use of high-energy beams can reduce hot spots in the radiation therapy. Therefore, mixing low and high energies with different ratios can control the rate of hotspots, as well as the dose distribution of the target volume.Material and Methods: The percentage depth doses (PDDs) were calculated at various depths, by using a fitted double exponential equation. Then, using quality factor equation and PDD of a 10×10 cm2 field, the amount of energy equivalent to each PDD and the value of weighting factors of 6, 18 MV energies were calculated to produce different energies. To validate the mathematical model, dosimetry of 10 MV energy was used. For this purpose, PDDs and dose Profile of 10 MV obtained from the mix were compared with ones obtained from the measurementResults: The value of weighting factor of 6 MV energy required for the 10 ×10 cm2 field to create dose distribution of 15 MV energy using 6 and 18 MV energies was obtained as equal to 0.57. Comparison of percentage depth dose curves and dose profile shows good agreement with the practical measurements of 10 MV for 10×10 cm2 field using gamma index.Conclusion:The simultaneous use of high and low photon energies with different weighting factors to achieve desirable energy makes possible the treatment of tumors located at various depths without the need for different modes of energy in the accelerator leading to a decrease in the cost of the equipment and a safer treatment of the cancerous patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.