Nowadays, drowsiness is a serious cause of traffic accidents, a problem of major concern to society. Driver fatigue or sleepiness decreases the driver's reaction time, reduces attention, and affects the quality of decision making which impairs the driving experience. Therefore, in this paper, a drowsiness detection system is designed based on computer vision, using a cascade of classifiers based on Haar-like features. The system is able to detect the face and eyes of the driver and determine the eyes closure or opening, which concludes the drowsiness of the driver. The paper presents the five primary steps involves which are: video acquirement, frame separation, face detection, eyes detection and drowsiness detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.