The present study introduced the unsteady squeezing flow of two-dimensional viscous fluid with nanoparticles between two disks by using the Levenberg–Marquardt backpropagated neural network (LMB-NN). Conversion of the partial differential equations (PDEs) into equivalent ordinary differential equations (ODEs) is performed by suitable similarity transformation. The data collection for suggested (LMB-NN) is made for various magnetohydrodynamic squeezing flow (MHDSF) scenarios in terms of the squeezing parameter, Prandtl number, Brownian motion parameter, and the thermophoresis parameter by employing the Runge–Kutta technique with the help of Mathematica software. The worth of the proposed methodology has been established for the proposed solver (LMB-NN) with different scenarios and cases, and the outcomes are compared through the effectiveness and reliability of mean square error (MSE) for the squeezing flow problem MHDSF. Moreover, the state transition, Fitness outline, histogram error, and regression presentation also endorse the strength and reliability of the solver LMB-NN. The high convergence between the reference solutions and the solutions obtained by incorporating the efficacy of a designed solver LMB-NN indicates the strength of the proposed methodology, where the accuracy level is achieved in the ranges from 10−6 to 10−12.
In this study, the unsteady squeezing flow between circular parallel plates (USF-CPP) is investigated through the intelligent computing paradigm of Levenberg–Marquard backpropagation neural networks (LMBNN). Similarity transformation introduces the fluidic system of the governing partial differential equations into nonlinear ordinary differential equations. A dataset is generated based on squeezing fluid flow system USF-CPP for the LMBNN through the Runge–Kutta method by the suitable variations of Reynolds number and volume flow rate. To attain approximation solutions for USF-CPP to different scenarios and cases of LMBNN, the operations of training, testing, and validation are prepared and then the outcomes are compared with the reference data set to ensure the suggested model’s accuracy. The output of LMBNN is discussed by the mean square error, dynamics of state transition, analysis of error histograms, and regression illustrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.