BackgroundBy an increase in use of composite restorations, some defects are also seen in these restorations, which need to be repaired. Since complete replacement of an old restoration may compromise the tooth structure, repair of defect is a more practical approach if there is no caries recurrence. Risk of pulp injury also decreases as such. One major challenge in restoration repair is to obtain a durable bond between the new and old composite. Laser irradiation has been suggested for surface preparation of old composite. This study aimed to assess the effect of composite surface preparation with Er,Cr:YSGG laser on microtensile bond strength to new composite.Material and MethodsA total of 18 blocks were fabricated in three groups of nanohybrid, microhybrid and Beautiful II giomer measuring 4x7x7 mm and subjected to 10,000 thermal cycles between 5-55°C with 30 seconds of dwell time. The samples were randomly assigned to no surface treatment (etching and bonding) or laser plus etching and bonding groups. Composite cylinders measuring 4x7x7 mm were fabricated of Beautiful, nanohybrid and microhybrid composites on old composite surfaces and subjected to 500 thermal cycles for 50 seconds between 5-55°C with 30 seconds of dwell time. Each block was sectioned into 10 samples and they were subjected to microtensile bond strength test. Data were analyzed using ANOVA and Tukey’s test.ResultsIn all composites, the mean bond strength in laser subgroups was higher than that in control subgroups except for giomer, which showed lower bond strength in laser subgroup. The lowest mean bond strength was noted in repair of Z350XT with Z350XT when the surface of old composite was etched (10.92 MPa). The highest mean bond strength was noted in repair of Z250 with giomer when the old composite surface was irradiated with laser (30.55 MPa).ConclusionsEr,Cr:YSGG laser plus etching increased the bond strength in all groups except for giomer group, which showed a reduction in bond strength. Key words:Composite resins, surface treatment, tensile bond strength, laser, er,cr:ysgg, giomer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.