Cerebral small vessel disease (CSVD) plays an important role in cognitive impairment, stroke, disability, and death. Hypertension is the main risk factor for CSVD. The use of antihypertensive therapy has not resulted in the expected decrease in CSVD complications, which may be related to the underestimation of significance of daily blood pressure profile for blood–brain barrier (BBB) permeability. 53 patients with CSVD of varying severity (mean age 60.08 ± 6.8 years, 69.8% women, subjects with treated long-standing hypertension vs. normotensive subjects − 84.8% vs. 15.2%) and 17 healthy volunteers underwent ambulatory blood pressure monitoring (ABPM) and MRI, including T1-weighted dynamic contrast-enhanced magnetic resonance imaging for assessing BBB permeability. Most of ABPM parameters in CSVD patients did not differ from controls, but were associated with the severity of white matter hyperintensity (WMH) and the total CSVD score. BBB permeability in normal-appearing white matter (NAWM) and grey matter (GM) was significantly higher in CSVD patients, and the severity of BBB permeability remained similar in patients with different stages of WMH. Among BBB permeability parameters, the area under the curve, corresponding to an increase in the contrast transit time in NAWM, had the greatest number of correlations with deviations of ABPM parameters. BBB permeability in CSVD is a universal mechanism of NAWM and GM damage associated with a slight increase in ABPM parameters. It is obvious that the treatment of hypertension in patients with not severe WMH should be more aggressive and carried out under the control of ABPM.
The evaluation of the clustering of magnetic resonance imaging (MRI) signs into MRI types and their relationship with circulating markers of vascular wall damage were performed in 96 patients with cerebral small vessel disease (cSVD) (31 men and 65 women; mean age, 60.91 ± 6.57 years). The serum concentrations of the tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor-A (VEGF-A), and hypoxia-inducible factor 1-α (HIF-1α) were investigated in 70 patients with Fazekas stages 2 and 3 of white matter hyperintensities (WMH) and 21 age- and sex-matched volunteers with normal brain MRI using ELISA. The cluster analysis excluded two patients from the further analysis due to restrictions in their scanning protocol. MRI signs of 94 patients were distributed into two clusters. In the first group there were 18 patients with Fazekas 3 stage WMH. The second group consisted of 76 patients with WMH of different stages. The uneven distribution of patients between clusters limited the subsequent steps of statistical analysis; therefore, a cluster comparison was performed in patients with Fazekas stage 3 WMH, designated as MRI type 1 and type 2 of Fazekas 3 stage. There were no differences in age, sex, degree of hypertension, or other risk factors. MRI type 1 had significantly more widespread WMH, lacunes in many areas, microbleeds, atrophy, severe cognitive and gait impairments, and was associated with downregulation of VEGF-A compared with MRI type 2. MRI type 2 had more severe deep WMH, lacunes in the white matter, no microbleeds or atrophy, and less severe clinical manifestations and was associated with upregulation of TNF-α compared with MRI type 1. The established differences reflect the pathogenetic heterogeneity of cSVD and explain the variations in the clinical manifestations observed in Fazekas stage 3 of this disease.
Hypertension (HT) and its cerebral complications are extremely vexing medical and social problems. Despite the obvious association between hypertension and the clinical and neuroimaging features of cerebral microangiopathy (CMA) (also known as cerebral small vessel disease), the causal links between them remain ambiguous. Besides, antihypertensive therapy as the only way to manage these patients does not always prevent brain damage. Knowledge about the key factors and mechanisms involved in HT and CMA development is important for predicting the risk of cerebral complications and developing new approaches to their prevention and treatment. At present, genome-wide association studies and other approaches are used to investigate the common hereditary mechanisms of HT and CMA development, which will explain a large number of CMA cases not associated with hypertension, lack of a correlation between HT severity and the degree of cerebral injury, and failure of antihypertensive therapy to prevent CMA progression. Epigenetic markers likely play a modulating role in the development of these diseases.
Cerebral small vessel disease (SVD) is one of the leading causes of cognitive impairment and stroke. The importance of endothelial dysfunction and high blood–brain barrier (BBB) permeability in pathogenesis, together with ischemia, is under discussion. The aim of this study was to clarify the relationship between tissue plasminogen activator (t-PA), plasminogen activator inhibitor (PAI-1), and magnetic resonance imaging (MRI) signs of SVD. We examined 71 patients (23 men and 48 women; mean age: 60.5 ± 6.9 years) with clinical and MRI signs of SVD, and 21 healthy volunteers with normal MRIs. All subjects underwent 3T MRI and measurements of t-PA and PAI-1 levels. An increase in t-PA level is correlated with the volume of white matter hyperintensities (WMH) (R = 0.289, p = 0.034), severity on the Fazekas scale (p = 0.000), and with the size of subcortical (p = 0.002) and semiovale (p = 0.008) perivascular spaces. The PAI-1 level is not correlated with the t-PA level or MRI signs of SVD. The correlation between t-PA and the degree of WMH and perivascular spaces’ enlargement, without a correlation with PAI-1 and lacunes, is consistent with the importance of t-PA in BBB disruption and its role in causing brain damage in SVD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.