BackgroundEvolutionary histories can be discordant across the genome, and such discordances need to be considered in reconstructing the species phylogeny. ASTRAL is one of the leading methods for inferring species trees from gene trees while accounting for gene tree discordance. ASTRAL uses dynamic programming to search for the tree that shares the maximum number of quartet topologies with input gene trees, restricting itself to a predefined set of bipartitions.ResultsWe introduce ASTRAL-III, which substantially improves the running time of ASTRAL-II and guarantees polynomial running time as a function of both the number of species (n) and the number of genes (k). ASTRAL-III limits the bipartition constraint set (X) to grow at most linearly with n and k. Moreover, it handles polytomies more efficiently than ASTRAL-II, exploits similarities between gene trees better, and uses several techniques to avoid searching parts of the search space that are mathematically guaranteed not to include the optimal tree. The asymptotic running time of ASTRAL-III in the presence of polytomies is where D=O(nk) is the sum of degrees of all unique nodes in input trees. The running time improvements enable us to test whether contracting low support branches in gene trees improves the accuracy by reducing noise. In extensive simulations, we show that removing branches with very low support (e.g., below 10%) improves accuracy while overly aggressive filtering is harmful. We observe on a biological avian phylogenomic dataset of 14K genes that contracting low support branches greatly improve results.ConclusionsASTRAL-III is a faster version of the ASTRAL method for phylogenetic reconstruction and can scale up to 10,000 species. With ASTRAL-III, low support branches can be removed, resulting in improved accuracy.Electronic supplementary materialThe online version of this article (10.1186/s12859-018-2129-y) contains supplementary material, which is available to authorized users.
Rapid growth of genome data provides opportunities for updating microbial evolutionary relationships, but this is challenged by the discordant evolution of individual genes. Here we build a reference phylogeny of 10,575 evenly-sampled bacterial and archaeal genomes, based on a comprehensive set of 381 markers, using multiple strategies. Our trees indicate remarkably closer evolutionary proximity between Archaea and Bacteria than previous estimates that were limited to fewer “core” genes, such as the ribosomal proteins. The robustness of the results was tested with respect to several variables, including taxon and site sampling, amino acid substitution heterogeneity and saturation, non-vertical evolution, and the impact of exclusion of candidate phyla radiation (CPR) taxa. Our results provide an updated view of domain-level relationships.
Genome-wide phylogeny reconstruction is becoming increasingly common, and one driving factor behind these phylogenomic studies is the promise that the potential discordance between gene trees and the species tree can be modeled. Incomplete lineage sorting is one cause of discordance that bridges population genetic and phylogenetic processes. ASTRAL is a species tree reconstruction method that seeks to find the tree with minimum quartet distance to an input set of inferred gene trees. However, the published ASTRAL algorithm only works with one sample per species. To account for polymorphisms in present-day species, one can sample multiple individuals per species to create multi-allele datasets. Here, we introduce how ASTRAL can handle multi-allele datasets. We show that the quartet-based optimization problem extends naturally, and we introduce heuristic methods for building the search space specifically for the case of multi-individual datasets. We study the accuracy and scalability of the multi-individual version of ASTRAL-III using extensive simulation studies and compare it to NJst, the only other scalable method that can handle these datasets. We do not find strong evidence that using multiple individuals dramatically improves accuracy. When we study the trade-off between sampling more genes versus more individuals, we find that sampling more genes is more effective than sampling more individuals, even under conditions that we study where trees are shallow (median length: ≈ 1N e ) and ILS is extremely high.
Motivation Species delimitation, the process of deciding how to group a set of organisms into units called species, is one of the most challenging problems in evolutionary computational biology. While many methods exist for species delimitation, most based on the coalescent theory, few are scalable to very large datasets, and methods that scale tend to be not accurate. Species delimitation is closely related to species tree inference from discordant gene trees, a problem that has enjoyed rapid advances in recent years. Results In this paper, we build on the accuracy and scalability of recent quartet-based methods for species tree estimation and propose a new method called SODA for species delimitation. SODA relies heavily on a recently developed method for testing zero branch length in species trees. In extensive simulations, we show that SODA can easily scale to very large datasets while maintaining high accuracy. Availability The code and data presented here are available on https://github.com/maryamrabiee/SODA Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.