Because of health concerns regarding synthetic antioxidants, natural antioxidant compounds are being considered by scientists. Bioactive peptides have been shown to have various physiological functions, such as antioxidative activity. Pomegranate seed protein, the by-product of the pomegranate seed oil industry, can be a good source of bioactive peptides. The optimum conditions for enzymatic hydrolysis of pomegranate seed protein with alcalase were determined using a response surface methodology. The influence of different temperatures (45-55 °C), times (30-180 min), and enzyme to substrate (E/S) ratio (1-3% w/w) on DPPH scavenging power and ferric reducing activity as the responses, were studied. Also, the degree of hydrolysis and the surface hydrophobicity of samples were determined. Moreover, using scanning electron microscopy and electrophoresis technique, microscopic structure and molecular weight of hydrolysate, were studied respectively. Alcalase-derived hydrolysates showed a DPPH scavenging activity (88 ± 0.97 %) and ferric reducing power (0.5 ± 0.83) at optimum conditions of hydrolysis (48.8°C, 97.5 min, E/S ratio 1.3%w/w). The degree of hydrolysis coincided with 36 ±1.2%. An increase in the surface hydrophobicity of the protein during hydrolysis confirmed the unfolding of the pomegranate seed protein structure. The presence of low-molecular-weight peptides was evidenced by the electrophoresis technique. As well as the SEM showed that protein fragments had been reduced to small sizes following enzymatic treatments. According to the results of this study, pomegranate seed protein hydrolysate can be considered a suitable source of antioxidants with an aggregate market value in food formulations
Because of health concerns regarding synthetic antioxidants, natural antioxidant compounds are being considered by scientists. Bioactive peptides have been shown to have various physiological functions, such as antioxidative activity. Pomegranate seed protein, the by-product of the pomegranate seed oil industry, can be a good source of bioactive peptides. The optimum conditions for enzymatic hydrolysis of pomegranate seed protein with alcalase were determined using a response surface methodology. The in uence of different temperatures (45-55 °C), times (30-180 min), and enzyme to substrate (E/S) ratio (1-3% w/w) on DPPH scavenging power and ferric reducing activity as the responses, were studied. Also, the degree of hydrolysis and the surface hydrophobicity of samples were determined. Moreover, using scanning electron microscopy and electrophoresis technique, microscopic structure and molecular weight of hydrolysate, were studied respectively. Alcalase-derived hydrolysates showed a DPPH scavenging activity (88 ± 0.97 %) and ferric reducing power (0.5 ± 0.83) at optimum conditions of hydrolysis (48.8°C, 97.5 min, E/S ratio 1.3%w/w). The degree of hydrolysis coincided with 36 ±1.2%. An increase in the surface hydrophobicity of the protein during hydrolysis con rmed the unfolding of the pomegranate seed protein structure. The presence of lowmolecular-weight peptides was evidenced by the electrophoresis technique. As well as the SEM showed that protein fragments had been reduced to small sizes following enzymatic treatments. According to the results of this study, pomegranate seed protein hydrolysate can be considered a suitable source of antioxidants with an aggregate market value in food formulations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.