The advent of high-power Hall thrusters and the increasing interest toward their use as a primary propulsion system for various missions have given a new boost to the efforts aiming at self-consistent predictive modeling of this thruster technology. In this article, we present a novel approach, which allows enhancing the predictive capability of one-dimensional particle-in-cell (PIC) simulations to self-consistently capture the wave-induced electron transport due to the azimuthal instabilities in Hall thrusters. The so-called “pseudo-2D” PIC scheme resulting from this approach is extensively tested in several operating conditions. The results are compared against a well-established 2D3V axial–azimuthal reference case in terms of the axial profiles of the time-averaged plasma properties, the azimuthal electric field fluctuations and their dispersion features, and the contributions of the force terms in the electron azimuthal momentum equation to the cross-field mobility. We have demonstrated that the pseudo-2D PIC provides a prediction of the above aspects that compares very closely in almost all conditions with those from the full-2D simulation. In addition, the sensitivity of the pseudo-2D simulation results to the numerical parameters associated with our approach is assessed in detail. The outcomes of these analyses have casted light on the next steps to further improve the approach.
Numerical simulations of a magnetically shielded Hall effect thruster with a centrally mounted cathode are performed with an axisymmetric hybrid particle-in-cell/fluid code and are partially validated with experimental data. A full description of the plasma discharge inside the thruster chamber and in the near plume is presented and discussed, with the aim of highlighting those features most dependent on the magnetic configuration and the central cathode. Compared to traditional magnetic configurations, the acceleration region is mainly outside the thruster, whereas high plasma densities and low temperatures are found inside the thruster. Thus, magnetic shielding does not decrease plasma currents to the walls, but reduces significantly the energy fluxes, yielding low heat loads and practically no wall erosion. The injection of neutrals at the central cathode generates a secondary plasma plume that merges with the main one and facilitates much the drift of electrons toward the chamber. Once inside, the magnetic topology is efficient in channeling electron current away from lateral walls. Current and power balances are analyzed to assess performances in detail.
Partially magnetized low-temperature plasmas (LTP) in an E × B configuration, where the applied magnetic field is perpendicular to the self-consistent electric field, have become increasingly relevant in industrial applications. Hall thrusters, a type of electrostatic plasma propulsion, are one of the main LTP technologies whose advancement is hindered by the not-fully-understood underlying physics of operation, particularly, with respect to the plasma instabilities and the associated electron cross field transport. The development of Hall thrusters with unconventional magnetic field topologies has imposed further questions regarding the instabilities' characteristics and the electrons' dynamics in these modern cross field configurations. Accordingly, we present in this effort a detailed parametric study of the influence of three factors on the plasma processes in the radial-azimuthal coordinates of a Hall thruster, namely, the magnetic field gradient, secondary electron emission, and plasma number density. The studies are carried out using the reduced-order particle-in-cell code developed by the authors. The setup of the radial-azimuthal simulations largely follows a well-defined benchmark case from the literature in which the magnetic field is oriented along the radius, and a constant axial electric field is applied perpendicular to the simulation plane. The salient finding from our investigations is that, in the studied cases corresponding to elevated plasma densities, a long-wavelength azimuthal mode with the frequency of about 1 MHz is developed. Moreover, in the presence of strong magnetic field gradients, this mode results from an inverse energy cascade and induces a significant electron cross field transport as well as a notable heating of the ions.
Reduced-order particle-in-cell (PIC) scheme is a novel modeling approach that enables computationally efficient electrostatic kinetic simulations of plasma. In our previous publications, we demonstrated that a proof-of-concept implementation of this novel PIC scheme resolves the multi-dimensional plasma processes and their interactions in a Hall thruster in a manner close to traditional electrostatic PIC codes. In this work, we extend our efforts on this topic and present a mathematically mature formulation for the dimensionality reduction of Poisson's equation in the Vlasov-Poisson system, which enables the generalized reduced-order "quasi-multi-dimensional" PIC scheme. The applicability of the dimensionality-reduction approach to solve general 2D Poisson problems is numerically verified. Next, we present several reduced-order quasi-2D simulations of a well-defined axial-azimuthal simulation case from the literature using approximation orders of the 2D problem whose computational costs are 2-15 % of a full-2D simulation. It is shown that these reduced-order simulations allow us to recover the same characteristics, behaviors and effects reported in the literature regarding the azimuthal instabilities in Hall thrusters. Moreover, in terms of the time-averaged plasma properties, it was found that, when increasing the approximation order, the error associated with the quasi-2D simulations’ predictions decreases from 15 to 4 % for the electric field and from 20 to 2 % for the ion number density. We have additionally discussed a series of sensitivity analysis results, including the influence of the initial number of macroparticles per cell on the predictions of the quasi-2D simulations. According to the detailed results and analyses presented, we conclude that the generalized reduced-order PIC scheme serves as a rigorous foundation for eventual cost-effective and comprehensive three-dimensional kinetic studies of the physics in Hall thrusters and similar electrostatic plasma technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.