Current work focuses on fabricating a new bio-nano adsorbent of Fe3O4@inulin nanocomposite via an in-situ co-precipitation procedure to adsorb methyl orange (MO) and crystal violet (CV) dyes from aqueous solutions. Different physical characterization analyses verified the successful fabrication of the magnetic nanocomposite. The adsorbent performance in dye removal was evaluated by varying initial dye concentration, adsorbent dosage, pH and temperature in 5110 mg/L, 0.10.8 g/L, 111 and 283–338 K, respectively. Due to the pH of zero point of charge and intrinsic properties of dyes, the optimum pHs were 5 and 7 for MO and CV adsorption, respectively. The correlation of coefficient (R2) and reduced chi-squared value were the criteria in order to select the best isotherm and kinetics models. The Langmuir model illustrated a better fit for the adsorption data for both dyes, demonstrating the maximum adsorption capacity of 276.26 and 223.57 mg/g at 338 K for MO and CV, respectively. As well, the pseudo-second-order model showed a better fitness for kinetics data compared to the pseudo-first-order and Elovich models. The thermodynamic parameters exhibited that the dye adsorption process is endothermic and spontaneous, which supported the enhanced adsorption rate by increasing temperature. Moreover, the nanocomposite presented outstanding capacity and stability after 6 successive cycles by retaining more than 87% of its initial dye removal efficiency. Overall, the magnetized inulin with Fe3O4 could be a competent adsorbent for eliminating anionic and cationic dyes from water.
To fabricate a photocatalytic acrylic paint, TiO2 nanoparticles were surface modified by a bi-functional amino silane (i.e. bis-3-(aminopropyltriethoxysilane)) at different concentrations and applied at 1, 3 and 5 wt% to an acrylic latex. It was found that the surface modification of nano TiO2 enhanced its specific surface area about 42%. The tensile properties of the pristine and nanocomposite acrylic films were assessed. The photocatalytic degradation of aqueous solution and stain of methylene blue (MB) were evaluated (under solar, visible, and UV illuminations) by nanoparticles and nanocomposites, respectively. Results showed that incorporating 3 wt% of the pure and modified nano TiO2 to arylic film caused 62 and 144% increment in the tensile strength. The modified nanoparticles showed higher MB degradation contents under UV, visible and solar irradiation (82, 70, 48%, respectively). The addition of pure and modified nanoparticles to the acrylic film caused decrement in the water contact angle from 84 to 70 and 46°, respectively. It also caused considerable enhancement in the glass transition temperature (Tg) of acrylic film compared to the pristine and pure nanocomposite films (i.e. about 17 and 9 °C, respectively). Furthermore, it was found that the modified nanocomposite caused more color change of MB stain (65%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.