Background and Purpose—
Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) were shown to induce neurological recovery after focal cerebral ischemia in rodents and to reverse postischemic lymphopenia in peripheral blood. Since peripheral blood cells, especially polymorphonuclear neutrophils (PMNs), contribute to ischemic brain injury, we analyzed brain leukocyte responses to sEVs and investigated the role of PMNs in sEV-induced neuroprotection.
Methods—
Male C57Bl6/j mice were exposed to transient intraluminal middle cerebral artery occlusion. After reperfusion, vehicle or sEVs prepared from conditioned media of MSCs raised from bone marrow samples of 3 randomly selected healthy human donors were intravenously administered. sEVs obtained from normoxic and hypoxic MSCs were applied. PMNs were depleted in vehicle and MSC-sEV–treated mice. Neurological deficits, ischemic injury, blood-brain barrier integrity, peripheral blood leukocyte responses, and brain leukocyte infiltration were evaluated over 72 hours.
Results—
sEV preparations of all 3 donors collected from normoxic MSCs significantly reduced neurological deficits. Preparations of 2 of these donors significantly decreased infarct volume and neuronal injury. sEV-induced neuroprotection was consistently associated with a decreased brain infiltration of leukocytes, namely of PMNs, monocytes/macrophages, and lymphocytes. sEVs obtained from hypoxic MSCs (1% O
2
) had similar effects on neurological deficits and ischemic injury as MSC-sEVs obtained under regular conditions (21% O
2
) but also reduced serum IgG extravasation—a marker of blood-brain barrier permeability. PMN depletion mimicked the effects of MSC-sEVs on neurological recovery, ischemic injury, and brain PMN, monocyte, and lymphocyte counts. Combined MSC-sEV administration and PMN depletion did not have any effects superior to PMN depletion in any of the readouts examined.
Conclusions—
Leukocytes and specifically PMNs contribute to MSC-sEV–induced ischemic neuroprotection. Individual MSC-sEV preparations may differ in their neuroprotective activities. Potency assays are urgently needed to identify their therapeutic efficacy before clinical application.
Visual Overview—
An online
visual overview
is available for this article.
The visualization of cerebral microvessels is essential for understanding brain remodeling after stroke. Injection of dyes allows for the evaluation of perfused vessels, but has limitations related either to incomplete microvascular filling or leakage. In conventional histochemistry, the analysis of microvessels is limited to 2D structures, with apparent limitations regarding the interpretation of vascular circuits. Herein, we developed a straight-forward technique to visualize microvessels in the whole ischemic mouse brain, combining the injection of a fluorescent-labeled low viscosity hydrogel conjugate with 3D solvent clearing followed by automated light sheet microscopy. We performed transient middle cerebral artery occlusion in C57Bl/6j mice and acquired detailed 3D vasculature images from whole brains. Subsequent image processing, rendering and fitting of blood vessels to a filament model was employed to calculate vessel length density, resulting in 0.922 ± 0.176 m/mm in healthy tissue and 0.329 ± 0.131 m/mm in ischemic tissue. This analysis showed a marked loss of capillaries with a diameter ≤ 10 µm and a more moderate loss of microvessels in the range > 10 and ≤ 20 µm, whereas vessels > 20 µm were unaffected by focal cerebral ischemia. We propose that this protocol is highly suitable for studying microvascular injury and remodeling post-stroke.
Malnutrition predisposes to poor stroke outcome. In animal models, undernutrition protected against ischemic injury in some, but not in other studies. In view of diverse stroke models and food restriction paradigms, the consequences of undernutrition are poorly understood. Herein, we exposed mice to energy-reduced and protein-energy-reduced diets for 7-30 days and subsequently induced intraluminal middle cerebral artery occlusion. Undernutrition phase dependently influenced ischemic injury. Shortlasting 7 days of protein-energy undernutrition, but not energy undernutrition, decreased post-ischemic brain leukocyte infiltration and microglial activation and reduced brain Il-1β mRNA, but did not protect against ischemic injury. Fourteen days of energy and protein-energy undernutrition, on the other hand, reduced ischemic injury despite absence of anti-inflammatory effects. Anti-oxidant genes (Sod-1, Sod-2, and Cat mRNAs) were regulated in the liver and, to a lesser extent, the ischemic brain, indicating an adapted, compensated stage. Conversely, 30 days of energy and protein-energy undernutrition caused progressive animal exhaustion associated with post-ischemic hypoperfusion, rise of metabolic markers (Sirt-1 and Glut-1 mRNAs, Sirt-1 protein) in the ischemic brain, and reregulation of pro-and anti-oxidant markers (now also Nox-4 and Gpx-3 mRNAs) in the liver. In the latter condition, no neuroprotection was noted. Our study suggests an adaptation of metabolic systems that provides neuroprotection in a circumscribed time window.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.