In this study, the influence of the T-shaped control plate on the fluid flow characteristics around a square cylinder for a low Reynolds numbers flow is systematically presented. The introduction of upstream attached T-shaped control plate is novel of its kind as T-shaped control plate used for the first time rather than the other passive control methods available in the literature. The Reynolds numbers (Re) are chosen to be Re = 100, 150, 200, and 250, and the T-shaped control plate of the same width with varying length is considered. A numerical investigation is performed using the single-relaxation-time lattice Boltzmann method. The numerical results reveal that there exists an optimum length of T-shaped control plate for reducing fluid forces. This optimum length was found to be 0.5 for Re = 100, 150, and 200 and 2 for Re = 250. At this optimum length, the fluctuating drag forces acting on the cylinder are reduced by 134%, 1375, 133%, and 136% for Re = 100, 150, 200, and 250, respectively. Instantaneous and time-averaged flow fields were also presented for some selected cases in order to identify the three different flow regimes around T-shaped control plate and square cylinder system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.