Alzheimer's disease (AD) is highly heritable and recent studies have identified over 20 diseaseassociated genomic loci. Yet these only explain a small proportion of the genetic variance, indicating that undiscovered loci remain. Here, we performed the largest genome-wide association study of clinically diagnosed AD and AD-by-proxy (71,880 cases, 383,378 controls). AD-by-proxy, based on parental diagnoses, showed strong genetic correlation with AD (rg=0.81). Meta-analysis identified 29 risk loci, implicating 215 potential causative genes. Associated genes are strongly expressed in immune-related tissues and cell types (spleen, liver and microglia). Gene-set analyses indicate biological mechanisms involved in lipid-related processes and degradation of amyloid precursor proteins. We show strong genetic correlations with multiple health-related outcomes, and Mendelian randomisation results suggest a protective effect of cognitive ability on AD risk. These results are a step forward in identifying the genetic factors that contribute to AD risk and add novel insights into the neurobiology of AD.
MATR3 is an RNA/DNA binding protein that interacts with TDP-43, a major disease protein linked to amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. We also observed MATR3 pathology in the spinal cords of ALS cases with and without MATR3 mutations. Our data provide additional evidence supporting the role of aberrant RNA processing in motor neuron degeneration.
We estimate the maximum prediction accuracy for the risk of Alzheimer's disease based on disease prevalence and heritability of liability. We demonstrate that the recently reported AUC values for predicting of Alzheimer's disease using polygenic scores reach about 90% of the estimated maximum accuracy that can be achieved by predictors of genetic risk based on genomic profiles.
Background
Heterozygous loss-of-function mutations in the acid beta-glucocerebrosidase (GBA1) gene, responsible for the recessive lysosomal storage disorder, Gaucher’s disease (GD), are the strongest known risk factor for Parkinson’s disease (PD). Our aim was to assess the contribution of GBA1 mutations in a series of early-onset PD.
Methods
One hundred and eighty-five PD patients (with an onset age of ≤50) and 283 age-matched controls were screened for GBA1 mutations by Sanger sequencing.
Results
We show that the frequency of GBA1 mutations is much higher in this patient series than in typical late-onset patient cohorts. Furthermore, our results reveal that the most prevalent PD-associated GBA1 mutation is E326K, a variant that does not, when homozygous, cause GD.
Conclusions
Our results confirm recent reports that the mutation, E326K, predisposes to PD and suggest that, in addition to reduced GBA1 activity, other molecular mechanisms may contribute to the development of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.