Big Data is the new term of the exponential growth of data in the Internet. The importance of Big Data is not about how large it is, but about what information you can get from analyzing these data. Such analysis would help many businesses on making smarter decisions, and provide time and cost reduction. Therefore, to make such analysis, you will definitely need to search the large files on Big Data. Big Data is such a construction where sequential search is prohibitively inefficient, in terms of time and energy. Therefore, any new technique that allows very efficient search in very large files is highly demanded. The paper presents an innovative approach for efficient searching with fuzzy criteria in very large information systems (Big Data). Organization of efficient access to a large amount of information by an "approximate" or "fuzzy" indication is a rather complicated Computer Science problem. Usually, the solution of this problem relies on a brute force approach, which results in sequential look-up of the file. In many cases, this substantially undermines system performance. The suggested technique in this paper uses different approach based on the Pigeonhole Principle. It searches binary strings that match the given request approximately. It substantially reduces the sequential search operations and works extremely efficiently from several orders of magnitude including speed, cost and energy. This paper presents a complex developed scheme for the suggested approach using a new data structure, called FuzzyFind Dictionary. The developed scheme provides more accuracy than the basic utilization of the suggested method. It also, works much faster than the sequential search.
searching through a large volume of data is very critical for companies, scientists, and searching engines applications due to time complexity and memory complexity. In this paper, a new technique of generating FuzzyFind Dictionary for text mining was introduced. We simply mapped the 23 bits of the English alphabet into a FuzzyFind Dictionary or more than 23 bits by using more FuzzyFind Dictionary, and reflecting the presence or absence of particular letters. This representation preserves closeness of word distortions in terms of closeness of the created binary vectors within Hamming distance of 2 deviations. This paper talks about the Golay Coding Transformation Hash Table and how it can be used on a FuzzyFind Dictionary as a new technology for using in searching through big data. This method is introduced by linear time complexity for generating the dictionary and constant time complexity to access the data and update by new data sets, also updating for new data sets is linear time depends on new data points. This technique is based on searching only for letters of English that each segment has 23 bits, and also we have more than 23-bit and also it could work with more segments as reference table.
The paper presents a new Cyber Physical Stream algorithm for selecting a predominant item from very large collections of data. The algorithm effectively works for frequencies of the predominant items starting from about 2%. The algorithm is focused on querying massive data in Software-Defined Storage combined with Fuzzy indexing method. Experiment results show that Cyber Physical Stream algorithm improves the accuracy and efficiency over previous efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.