The aim of this study was to evaluate the antibacterial effect of nisin-loaded chitosan/alginate nanoparticles as a novel antibacterial delivery vehicle. The nisin-loaded nanoparticles were prepared using colloidal dispersion of the chitosan/alginate polymers in the presence of nisin. After the preparation of the nisin-loaded nanoparticles, their physicochemical properties such as size, shape, and zeta potential of the formulations were studied using scanning electron microscope and nanosizer instruments, consecutively. FTIR and differential scanning calorimetery studies were performed to investigate polymer-polymer or polymer-protein interactions. Next, the release kinetics and entrapment efficiency of the nisin-loaded nanoparticles were examined to assess the application potential of these formulations as a candidate vector. For measuring the antibacterial activity of the nisin-loaded nanoparticles, agar diffusion and MIC methods were employed. The samples under investigation for total microbial counts were pasteurized and raw milks each of which contained the nisin-loaded nanoparticles and inoculated Staphylococcus aureus (ATCC 19117 at 10(6) CFU/mL), pasteurized and raw milks each included free nisin and S. aureus (10(6) CFU/mL), and pasteurized and raw milks each had S. aureus (10(6) CFU/mL) in as control. Total counts of S. aureus were measured after 24 and 48 h for the pasteurized milk samples and after the time intervals of 0, 6, 10, 14, 18, and 24 h for the raw milk samples, respectively. According to the results, entrapment efficiency of nisin inside of the nanoparticles was about 90-95%. The average size of the nanoparticles was 205 nm, and the average zeta potential of them was -47 mV. In agar diffusion assay, an antibacterial activity (inhibition zone diameter, at 450 IU/mL) about 2 times higher than that of free nisin was observed for the nisin-loaded nanoparticles. MIC of the nisin-loaded nanoparticles (0.5 mg/mL) was about four times less than that of free nisin (2 mg/mL). Evaluation of the kinetic of the growth of S. aureus based on the total counts in the raw and pasteurized milks revealed that the nisin-loaded nanoparticles were able to inhibit more effectively the growth of S. aureus than free nisin during longer incubation periods. In other words, the decrease in the population of S. aureus for free nisin and the nisin-loaded nanoparticles in pasteurized milk was the same after 24 h of incubation while lessening in the growth of S. aureus was more marked for the nisin-loaded nanoparticles than the samples containing only free nisin after 48 h of incubation. Although the same growth reduction profile in S. aureus was noticed for free nisin and the nisin-loaded nanoparticles in the raw milk up to 14 h of incubation, after this time the nisin-loaded nanoparticles showed higher growth inhibition than free nisin. Since, generally, naked nisin has greater interactions with the ingredients present in milk samples in comparison with the protected nisin. Therefore, it is concluded that the antibacteri...
To improve the deficiencies concerning the physicochemical instability of nisin, a hybrid of nisin at concentration of 450 IU/mL with chitosan/alginate nanoparticles was prepared. Antibacterial strength of the hybrid was compared with free nisin against Listeria monocytogenes ATCC 25923 and Staphylococcus aureus ATCC 19117 in ultra filtered (UF) Feta cheese. The effects of nisin and the nisin-loaded nanoparticles on the chemical composition, rheological parameters, color indices and sensory attributes of UF Feta cheese were studied. Antibacterial experiments indicated that the nisin-loaded nanoparticles were able to decrease the populations of S. aureus and L. monocytogenes up to five-and sevenfold on a logarithmic scale in comparison with free nisin, respectively. Sensory acceptance and physicochemical features of UF Feta cheese were also significantly improved using the nisin-loaded nanoparticles as compared with those of free nisin. Overall, greater antibacterial strengths and less undesirable influences of this hybrid than those of free nisin on the original quality of UF Feta cheese would make this hybrid a promising biopreservative in dairy products. PRACTICAL APPLICATIONSThis study investigates the use of chitosan/alginate nanoparticles as an auxiliary adjuvant in food preservation process. Considering our former promising antibacterial strength observed for this hybrid against S. aureus in the milk samples and also our new findings, it can be concluded that this hybrid would actually be an effectual potential biopreservative against common foodborne pathogens without any harmful side effects on the original qualities of the assessed dairy products. These outstanding features would be an incentive for further future investigation and probable industrialization of this hybrid as a highly productive biopreservative in food preservation technology. bs_bs_banner Journal of Food Safety
Purpose In this study, chitosan/alginate nanoparticles are prospected as a carrier for controlled release of recombinant human bone morphogenetic protein-2 (rhBMP-2). Materials and Methods The rhBMP-2-loaded chitosan/alginate nanoparticles (Cs/Alg/B NPs) were prepared using the ionic gelation (IG) method. The current research was conducted to optimize the effective factors for entrapping rhBMP-2 in Cs/Alg NPs using response surface methodology (RSM) and the Box–Behnken design (BBD). The variables were the Cs/Alg molecular weight (Mw) ratios (1–3), pH (4.8–5.5), stirring rates (900–1300 rpm) and the responses included size, ζ-potential, polydispersity index (PDI), loading efficacy (LE), cumulative release (CR), and morphological degradation time (MDE). Then, the morphological properties of optimum formulation were studied for post-characterization. In the next step, the MTT assay for the optimized run was done for 24 and 48 hours. Results The results revealed that the optimum conditions for the mentioned variables were stirring rate=1100 rpm, pH=5.15, and Cs/Alg Mw ratio=1.75 based on numerical optimization. It was shown that the average particle size and loading efficacy at optimum conditions were 253 nm and 67%, respectively. Other responses were as follows: CR=66%, ζ-potential=+35mV, PDI=0.5, and MDT=7 days. Conclusion The results have suggested that the statistical optimization of rhBMP-2 offers the possibility of preparing Cs/Alg/B NPs with a favorable size, controlled release characteristics, and high loading efficiency. It is expected that the acquired optimum conditions will be useful for efficient rhBMP-2 delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.