In this work, we introduce a new non-Shilnikov chaotic system with an infinite number of nonhyperbolic equilibrium points. The proposed system does not have any linear term, and it is worth noting that the new system has one equilibrium point with triple zero eigenvalues at the origin. Also, the novel system has an infinite number of equilibrium points with double zero eigenvalues that are located on the z -axis. Numerical analysis of the system reveals many strong dynamics. The new system exhibits multistability and antimonotonicity. Multistability implies the coexistence of many periodic, limit cycle, and chaotic attractors under different initial values. Also, bifurcation analysis of the system shows interesting phenomena such as periodic window, period-doubling route to chaos, and inverse period-doubling bifurcations. Moreover, the complexity of the system is analyzed by computing spectral entropy. The spectral entropy distribution under different initial values is very scattered and shows that the new system has numerous multiple attractors. Finally, chaos-based encoding/decoding algorithms for secure data transmission are developed by designing a state chain diagram, which indicates the applicability of the new chaotic system.
In this work, we present a novel three-dimensional chaotic system with only two cubic nonlinear terms. Dynamical behavior of the system reveals a period-subtracting bifurcation structure containing all [Formula: see text]th-order ([Formula: see text]) periods that are found in the dynamical evolution of the novel system concerning different values of parameters. The new system could be evolved into different states such as point attractor, limit cycle, strange attractor and butterfly strange attractor by changing the parameters. Also, the system is multistable, which implies another feature of a chaotic system known as the coexistence of numerous spiral attractors with one limit cycle under different initial values. Furthermore, bifurcation analysis reveals interesting phenomena such as period-doubling route to chaos, antimonotonicity, periodic solutions, and quasi-periodic motion. In the meantime, the existence of periodic solutions is confirmed via constructed Poincaré return maps. In addition, by studying the influence of system parameters on complexity, it is confirmed that the chaotic system has high spectral entropy. Numerical analysis indicates that the system has a wide variety of strong dynamics. Finally, a message coding application of the proposed system is developed based on periodic solutions, which indicates the importance of studying periodic solutions in dynamical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.