Australia is one of the most bushfire-prone countries. Prediction and management of bushfires in bushfire-susceptible areas can reduce the negative impacts of bushfires. The generation of bushfire susceptibility maps can help improve the prediction of bushfires. The main aim of this study was to use single gene expression programming (GEP) and ensemble of GEP with well-known data mining to generate bushfire susceptibility maps for New South Wales, Australia, as a case study. We used eight methods for bushfire susceptibility mapping: GEP, random forest (RF), support vector machine (SVM), frequency ratio (FR), ensemble techniques of GEP and FR (GEPFR), RF and FR (RFFR), SVM and FR (SVMFR), and logistic regression (LR) and FR (LRFR). Areas under the curve (AUCs) of the receiver operating characteristic were used to evaluate the proposed methods. GEPFR exhibited the best performance for bushfire susceptibility mapping based on the AUC (0.892 for training, 0.890 for testing), while RFFR had the highest accuracy (95.29% for training, 94.70% for testing) among the proposed methods. GEPFR is an ensemble method that uses features from the evolutionary algorithm and the statistical FR method, which results in a better AUC for the bushfire susceptibility maps. Single GEP showed AUC of 0.884 for training and 0.882 for testing. RF also showed AUC of 0.902 and 0.876 for training and testing, respectively. SVM had 0.868 for training and 0.781 for testing for bushfire susceptibility mapping. The ensemble methods had better performances than those of the single methods.
Bushfire susceptibility mapping helps the government authorities predict and provide the required disaster management plans to reduce the adverse impacts from bushfires. In this paper, we investigated Gene Expression Programming (GEP) and ensemble methods to create bushfire susceptibility maps for Victoria, Australia, as a case study. Bushfire susceptibility maps indicate that the eastern part of Victoria where forests are predominant has the highest probability of bushfire. Western part of Victoria which is covered by cropland, shrubland and grassland has the lowest bushfire probability. Two ensemble methods, namely an ensemble of GEP and Frequency Ratio (GEPFR) and an ensemble of Logistic Regression and Frequency Ratio (LRFR), were proposed and compared with stand-alone GEP and stand-alone Frequency Ratio (FR) methods. The proposed methods were evaluated by Area Under Curve (AUC). AUCs of GEPFR, LRFR, GEP and FR are 0.860, 0.852, 0.850, and 0.840, respectively. It can be concluded that GEPFR outperforms the other three methods, and the ensemble methods outperform the standalone methods. GEPFR, LRFR and GEP produced the bushfire probability with an accuracy in the range of 90.79%À92.27%, and therefore they are equally useful for policy makers and managers to have better natural hazard management plans.
Australia is one of the most bushfire-prone countries. Prediction and management of bushfires in bushfire-susceptible areas can reduce the negative impacts of bushfires. The generation of bushfire susceptibility maps can help improve the prediction of bushfires. The main aim of this study was to use single gene expression programming (GEP) and ensemble of GEP with well-known statistical methods to generate bushfire susceptibility maps for New South Wales, Australia as a case study. We used eight methods for bushfire susceptibility mapping: GEP, random forest (RF), support vector machine (SVM), frequency ratio (FR), ensemble techniques of GEP and FR (GEPFR), RF and FR (RFFR), SVM and FR (SVMFR), and LR and FR (LRFR). Areas under the curve (AUCs) of the receiver operating characteristic were used to evaluate the proposed methods. GEPFR exhibited the best performance for bushfire susceptibility mapping based on the AUC (0.890), while RFFR had the highest accuracy (94.70%) among the proposed methods. GEPFR is an ensemble method that uses features from the evolutionary algorithm and the statistical FR method, which results in a better AUC for the bushfire susceptibility maps. The ensemble methods had better performances than those of the single methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.