A B S T R A C T PurposeGiven the molecular pathophysiology of thyroid cancer and the spectrum of kinases inhibited by sorafenib, including Raf kinase, vascular endothelial growth factor receptors, platelet-derived growth factor receptor, and RET tyrosine kinases, we conducted an open-label phase II trial to determine the efficacy of sorafenib in patients with advanced thyroid carcinoma. Patients and MethodsEligible patients with metastatic, iodine-refractory thyroid carcinoma received sorafenib 400 mg orally twice daily. Responses were measured radiographically every 2 to 3 months. The study end points included response rate, progression-free survival (PFS), and best response by Response Evaluation Criteria in Solid Tumors. ResultsThirty patients were entered onto the study and treated for a minimum of 16 weeks. Seven patients (23%; 95% CI, 0.10 to 0.42) had a partial response lasting 18ϩ to 84 weeks. Sixteen patients (53%; 95% CI, 0.34 to 0.72) had stable disease lasting 14 to 89ϩ weeks. Seventeen (95%) of 19 patients for whom serial thyroglobulin levels were available showed a marked and rapid response in thyroglobulin levels with a mean decrease of 70%. The median PFS was 79 weeks. Toxicity was consistent with other sorafenib trials, although a single patient died of liver failure that was likely treatment related. ConclusionSorafenib has clinically relevant antitumor activity in patients with metastatic, iodine-refractory thyroid carcinoma, with an overall clinical benefit rate (partial response ϩ stable disease) of 77%, median PFS of 79 weeks, and an overall acceptable safety profile. These results represent a significant advance over chemotherapy in both response rate and PFS and support further investigation of this agent in these patients.
The combination of temsirolimus (TEM), an MTOR inhibitor, and hydroxychloroquine (HCQ), an autophagy inhibitor, augments cell death in preclinical models. This phase 1 dose-escalation study evaluated the maximum tolerated dose (MTD), safety, preliminary activity, pharmacokinetics, and pharmacodynamics of HCQ in combination with TEM in cancer patients. In the dose escalation portion, 27 patients with advanced solid malignancies were enrolled, followed by a cohort expansion at the top dose level in 12 patients with metastatic melanoma. The combination of HCQ and TEM was well tolerated, and grade 3 or 4 toxicity was limited to anorexia (7%), fatigue (7%), and nausea (7%). An MTD was not reached for HCQ, and the recommended phase II dose was HCQ 600 mg twice daily in combination with TEM 25 mg weekly. Other common grade 1 or 2 toxicities included fatigue, anorexia, nausea, stomatitis, rash, and weight loss. No responses were observed; however, 14/21 (67%) patients in the dose escalation and 14/19 (74%) patients with melanoma achieved stable disease. The median progression-free survival in 13 melanoma patients treated with HCQ 1200mg/d in combination with TEM was 3.5 mo. Novel 18-fluorodeoxyglucose positron emission tomography (FDG-PET) measurements predicted clinical outcome and provided further evidence that the addition of HCQ to TEM produced metabolic stress on tumors in patients that experienced clinical benefit. Pharmacodynamic evidence of autophagy inhibition was evident in serial PBMC and tumor biopsies only in patients treated with 1200 mg daily HCQ. This study indicates that TEM and HCQ is safe and tolerable, modulates autophagy in patients, and has significant antitumor activity. Further studies combining MTOR and autophagy inhibitors in cancer patients are warranted.
Purpose: This study evaluated the safety, maximum tolerated dose, pharmacokinetics, and antitumor activity of sorafenib, a multikinase inhibitor, combined with paclitaxel and carboplatin in patients with solid tumors. Patients and Methods: Thirty-nine patients with advanced cancer (24 with melanoma) received oral sorafenib 100, 200, or 400 mg twice daily on days 2 to 19 of a 21-day cycle. All patients received carboplatin corresponding to AUC6 and 225 mg/m 2 paclitaxel on day 1. Pharmacokinetic analyses were done for sorafenib on days 2 and 19 of cycle 1and for paclitaxel on day 1of cycles 1and 2. Pretreatment tumor samples from 17 melanoma patients were analyzed for BRAF mutations. Results: Sorafenib was well tolerated at the doses evaluated. The most frequent severe adverse events were hematologic toxicities (grade 3 or 4 in 33 patients, 85%). Twenty-seven (69%) patients had sorafenib-related adverse events, the most frequent of which were dermatologic events (26 patients, 67%). Exposure to paclitaxel was not altered by intervening treatment with sorafenib. Treatment with sorafenib, paclitaxel, and carboplatin resulted in one complete response and nine partial responses, all among patients with melanoma. There was no correlation between BRAF mutational status and treatment responses in patients with melanoma. Conclusions:The recommended phase II doses are oral 400 mg twice daily sorafenib, carboplatin at an AUC6 dose, and 225 mg/m 2 paclitaxel. The tumor responses observed with this combined regimen in patients with melanoma warrant further investigation.
Purpose: Everolimus inhibits the mTOR, activating cytoprotective autophagy. Hydroxychloroquine inhibits autophagy. On the basis of preclinical data demonstrating synergistic cytotoxicity when mTOR inhibitors are combined with an autophagy inhibitor, we launched a clinical trial of combined everolimus and hydroxychloroquine, to determine its safety and activity in patients with clear-cell renal cell carcinoma (ccRCC). Patients and Methods: Three centers conducted a phase I/II trial of everolimus 10 mg daily and hydroxychloroquine in patients with advanced ccRCC. The objectives were to determine the MTD of hydroxychloroquine with daily everolimus, and to estimate the rate of 6-month progression-free survival (PFS) in patients with ccRCC receiving everolimus/hydroxychloroquine after 1-3 prior treatment regimens. Correlative studies to identify patient subpopulations that achieved the most benefit included population pharmacokinetics, measurement of autophagosomes by electron microscopy, and next-generation tumor sequencing. Results: No dose-limiting toxicity was observed in the phase I trial. The recommended phase II dose of hydroxychloroquine 600 mg twice daily with everolimus was identified. Disease control [stable disease þ partial response (PR)] occurred in 22 of 33 (67%) evaluable patients. PR was observed in 2 of 33 patients (6%). PFS ! 6 months was achieved in 15 of 33 (45%) of patients who achieved disease control. Conclusions: Combined hydroxychloroquine 600 mg twice daily with 10 mg daily everolimus was tolerable. The primary endpoint of >40% 6-month PFS rate was met. Hydroxychloroquine is a tolerable autophagy inhibitor in future RCC or other trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.