(1) Background: To evaluate the effects of an AI-based denoising post-processing software solution in low-dose whole-body computer tomography (WBCT) stagings; (2) Methods: From 1 January 2019 to 1 January 2021, we retrospectively included biometrically matching melanoma patients with clinically indicated WBCT staging from two scanners. The scans were reconstructed using weighted filtered back-projection (wFBP) and Advanced Modeled Iterative Reconstruction strength 2 (ADMIRE 2) at 100% and simulated 50%, 40%, and 30% radiation doses. Each dataset was post-processed using a novel denoising software solution. Five blinded radiologists independently scored subjective image quality twice with 6 weeks between readings. Inter-rater agreement and intra-rater reliability were determined with an intraclass correlation coefficient (ICC). An adequately corrected mixed-effects analysis was used to compare objective and subjective image quality. Multiple linear regression measured the contribution of “Radiation Dose”, “Scanner”, “Mode”, “Rater”, and “Timepoint” to image quality. Consistent regions of interest (ROI) measured noise for objective image quality; (3) Results: With good–excellent inter-rater agreement and intra-rater reliability (Timepoint 1: ICC ≥ 0.82, 95% CI 0.74–0.88; Timepoint 2: ICC ≥ 0.86, 95% CI 0.80–0.91; Timepoint 1 vs. 2: ICC ≥ 0.84, 95% CI 0.78–0.90; all p ≤ 0.001), subjective image quality deteriorated significantly below 100% for wFBP and ADMIRE 2 but remained good–excellent for the post-processed images, regardless of input (p ≤ 0.002). In regression analysis, significant increases in subjective image quality were only observed for higher radiation doses (≥0.78, 95%CI 0.63–0.93; p < 0.001), as well as for the post-processed images (≥2.88, 95%CI 2.72–3.03, p < 0.001). All post-processed images had significantly lower image noise than their standard counterparts (p < 0.001), with no differences between the post-processed images themselves. (4) Conclusions: The investigated AI post-processing software solution produces diagnostic images as low as 30% of the initial radiation dose (3.13 ± 0.75 mSv), regardless of scanner type or reconstruction method. Therefore, it might help limit patient radiation exposure, especially in the setting of repeated whole-body staging examinations.
(1) This study evaluates the impact of an AI denoising algorithm on image quality, diagnostic accuracy, and radiological workflows in pediatric chest ultra-low-dose CT (ULDCT). (2) Methods: 100 consecutive pediatric thorax ULDCT were included and reconstructed using weighted filtered back projection (wFBP), iterative reconstruction (ADMIRE 2), and AI denoising (PixelShine). Place-consistent noise measurements were used to compare objective image quality. Eight blinded readers independently rated the subjective image quality on a Likert scale (1 = worst to 5 = best). Each reader wrote a semiquantitative report to evaluate disease severity using a severity score with six common pathologies. The time to diagnosis was measured for each reader to compare the possible workflow benefits. Properly corrected mixed-effects analysis with post-hoc subgroup tests were used. Spearman’s correlation coefficient measured inter-reader agreement for the subjective image quality analysis and the severity score sheets. (3) Results: The highest noise was measured for wFBP, followed by ADMIRE 2, and PixelShine (76.9 ± 9.62 vs. 43.4 ± 4.45 vs. 34.8 ± 3.27 HU; each p < 0.001). The highest subjective image quality was measured for PixelShine, followed by ADMIRE 2, and wFBP (4 (4–5) vs. 3 (4–5) vs. 3 (2–4), each p < 0.001) with good inter-rater agreement (r ≥ 0.790; p ≤ 0.001). In diagnostic accuracy analysis, there was a good inter-rater agreement between the severity scores (r ≥ 0.764; p < 0.001) without significant differences between severity score items per reconstruction mode (F (5.71; 566) = 0.792; p = 0.570). The shortest time to diagnosis was measured for the PixelShine datasets, followed by ADMIRE 2, and wFBP (2.28 ± 1.56 vs. 2.45 ± 1.90 vs. 2.66 ± 2.31 min; F (1.000; 99.00) = 268.1; p < 0.001). (4) Conclusions: AI denoising significantly improves image quality in pediatric thorax ULDCT without compromising the diagnostic confidence and reduces the time to diagnosis substantially.
Background Cross-sectional imaging-based morphological characteristics of pediatric rhabdomyosarcoma have failed to predict outcomes. Objective To evaluate the feasibility and possible value of generating tumor sub-volumes using voxel-wise analysis of metabolic and functional data from positron emission tomography/magnetic resonance imaging (PET/MR) or PET/computed tomography (CT) and MRI in rhabdomyosarcoma. Materials and methods Thirty-four examinations in 17 patients who received PET/MRI or PET/CT plus MRI were analyzed. The volume of interest included total tumor volume before and after therapy. Apparent diffusion coefficients (ADC) and standard uptake values (SUV) were determined voxel-wise. Voxels were assigned to three different groups based on ADC and SUV: “viable tumor tissue,” “intermediate tissue” or “possible necrosis.” In a second approach, data were grouped into three clusters using the Gaussian mixture model. The ratio of these clusters to total tumor volume and changes due to chemotherapy were correlated with clinical and histopathological data. Results After chemotherapy, the proportion of voxels in the different groups changed significantly. A significant reduction of the proportion of voxels assigned to cluster 1 was found, from a mean of 36.4% to 2.5% (P < 0.001). There was a significant increase in the proportion of voxels in cluster 3 following chemotherapy from 24.8% to 81.6% (P = 0.02). The proportion of voxels in cluster 2 differed depending on the presence or absence of tumor recurrence, falling from 48% to 10% post-chemotherapy in the group with no tumor recurrence (P < 0.05) and from 29% to 23% (P > 0.05) in the group with tumor recurrence. Conclusion Voxel-wise evaluation of multimodal data in rhabdomyosarcoma is feasible. Our initial results suggest that the different distribution of sub-volumes before and after therapy may have prognostic significance.
Over the last decades, overall survival for most cancer types has increased due to earlier diagnosis and more effective treatments. Simultaneously, whole-body MRI-(WB-MRI) has gained importance as a radiation free staging alternative to computed tomography. The aim of this study was to evaluate the diagnostic confidence and reproducibility of a novel abbreviated 20-min WB-MRI for oncologic follow-up imaging in patients with melanoma. In total, 24 patients with melanoma were retrospectively included in this institutional review board-approved study. All patients underwent three consecutive staging examinations via WB-MRI in a clinical 3 T MR scanner with an abbreviated 20-min protocol. Three radiologists independently evaluated the images in a blinded, random order regarding image quality (overall image quality, organ-based image quality, sharpness, noise, and artifacts) and regarding its diagnostic confidence on a 5-point-Likert-Scale (5 = excellent). Inter-reader agreement and reproducibility were assessed. Overall image quality and diagnostic confidence were rated to be excellent (median 5, interquartile range [IQR] 5–5). The sharpness of anatomic structures, and the extent of noise and artifacts, as well as the assessment of lymph nodes, liver, bone, and the cutaneous system were rated to be excellent (median 5, IQR 4–5). The image quality of the lung was rated to be good (median 4, IQR 4–5). Therefore, our study demonstrated that the novel accelerated 20-min WB-MRI protocol is feasible, providing high image quality and diagnostic confidence with reliable reproducibility for oncologic follow-up imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.