Damage to cellular DNA is believed to determine the antiproliferative properties of platinum (Pt) drugs. This study characterized DNA damage by oxaliplatin, a diaminocyclohexane Pt drug with clinical antitumor activity. Compared with cisplatin, oxaliplatin formed significantly fewer Pt-DNA adducts (e.g., 0.86+/-0.04 versus 1.36+/- 0.01 adducts/10(6) base pairs/10 microM drug/1 h, respectively, in CEM cells, P<.01). Oxaliplatin was found to induce potentially lethal bifunctional lesions, such as interstrand DNA cross-links (ISC) and DNA-protein cross-links (DPC) in CEM cells. As with total adducts, however, oxaliplatin produced fewer (P<.05) bifunctional lesions than did cisplatin: 0.7+/-0.2 and 1.8+/-0.3 ISC and 0.8+/-0.1 and 1.5+/-0.3 DPC/10(6) base pairs/10 microM drug, respectively, after a 4-h treatment. Extended postincubation (up to 12 h) did not compensate the lower DPC and ISC levels by oxaliplatin. ISC and DPC determinations in isolated CEM nuclei unequivocally verified that oxaliplatin is inherently less able than cisplatin to form these lesions. Reactivation of drug-treated plasmids, observed in four cell lines, suggests that oxaliplatin adducts are repaired with similar kinetics as cisplatin adducts. Oxaliplatin, however, was more efficient than cisplatin per equal number of DNA adducts in inhibiting DNA chain elongation ( approximately 7-fold in CEM cells). Despite lower DNA reactivity, oxaliplatin exhibited similar or greater cytotoxicity in several other human tumor cell lines (50% growth inhibition in CEM cells at 1.1/1.2 microM, respectively). The results demonstrate that oxaliplatin-induced DNA lesions, including ISC and DPC, are likely to contribute to the drug's biological properties. However, oxaliplatin requires fewer DNA lesions than does cisplatin to achieve cell growth inhibition.
Oxaliplatin is a clinical anticancer drug with a pharmacological profile distinct from that of cisplatin. Our studies compared site- and region-specificity of lesions induced by oxaliplatin and cisplatin in naked and intracellular DNA, respectively. Oxaliplatin adducts in naked Simian virus 40 (SV40 DNA) were mapped by repetitive primer extension. The sites of oxaliplatin adducts were nearly identical to the sites of cisplatin adducts and were focused in G clusters and GNG motifs probably reflecting intrastrand cross-links. Although alkaline agarose electrophoresis of specific SV40 fragments showed that oxaliplatin formed interstrand cross-links, the levels of this lesion type were low. Drug-induced lesions in discrete loci of cellular DNA were assessed by the polymerase chain reaction stop assay in human tumor A2780 cells. Oxaliplatin at 200 microM induced approximately 1300, approximately 1500, approximately 800, and approximately 300 lesions/10(6) bp in the human beta-globin, c-myc, and HPRT genes and in mitochondrial DNA, respectively. Cisplatin formed two to six times more lesions in the same regions. For both drugs, lesion frequencies seem to parallel the density of drug-binding motifs in the nuclear regions, whereas mitochondrial DNA was disproportionately less affected. Despite less potent induction of DNA lesions, oxaliplatin was more cytotoxic than cisplatin against A2780 cells. Because our findings clearly demonstrate that oxaliplatin forms covalent adducts with a similar sequence- and region-specificity to that of cisplatin, other properties of oxaliplatin adducts, factors other than DNA binding, or both determine the unique features of the mechanism of action of oxaliplatin.
All MSC populations are not equivalent; care should be taken to select cells for clinical use that minimize potential safety problems and maximize chance of patient benefit. Adipose-derived MSCs seem more consistently procoagulant than BM-MSCs, presenting a potential safety concern for systemic administration in coagulopathic patients. Donor variation exists between different cell populations, and culture handling conditions may also determine coagulation activity. Cells must be routinely monitored during preparation to ensure that they retain the desired characteristics before patient administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.