Increasing agricultural production is a major concern that aims to increase income, reduce hunger, and improve other measures of well-being. Recently, the prediction of soil-suitability has become a primary topic of rising concern among academics, policymakers, and socio-economic analysts to assess dynamics of the agricultural production. This work aims to use physico-chemical and remotely sensed phenological parameters to produce soil-suitability maps (SSM) based on Machine Learning (ML) Algorithms in a semi-arid and arid region. Towards this goal an inventory of 238 suitability points has been carried out in addition to14 physico-chemical and 4 phenological parameters that have been used as inputs of machine-learning approaches which are five MLA prediction, namely RF, XgbTree, ANN, KNN and SVM. The results showed that phenological parameters were found to be the most influential in soil-suitability prediction. The validation of the Receiver Operating Characteristics (ROC) curve approach indicates an area under the curve and an AUC of more than 0.82 for all models. The best results were obtained using the XgbTree with an AUC = 0.97 in comparison to other MLA. Our findings demonstrate an excellent ability for ML models to predict the soil-suitability using physico-chemical and phenological parameters. The approach developed to map the soil-suitability is a valuable tool for sustainable agricultural development, and it can play an effective role in ensuring food security and conducting a land agriculture assessment.
Forest ecosystems are exposed increasingly to a variety of human activities and accentuated by climate change. With its Mediterranean climate, Northern Morocco is very hot, which exposes forests to widespread fires. This work aims at the delineation of wildfires and the spectral characterization of burnt vegetation as well as the characterization of the fire severity in the North of Morocco by using Landsat-8, Sentinel-2 spectral data, and topographic data. The methods used include the derivation of wildfires spectral indices and the computation of topographic parameters (elevation, slope, exposure) from SRTM and PALSAR digital elevation models. Then, the Spectral Angle Mapper (SAM) classification was used to map forest fires' severity. Furthermore, we have compared the severity classes obtained from the SAM method applied to Landsat 8 and Sentinel 2 data, with different spectral indices specialized in detecting wildfires, on the one hand, and topographic data, on the other hand. Results showed that MIRBI and NBR indices allow a better characterization of burned areas than BAI index. For its part, SAM classification provides a fair characterization of the severity classes of burnt forests. It has also been shown that the MIRBI index and sun exposure are strongly correlated with severity classes. The obtained maps show the spatial heterogeneity of burns severity and how they interact with topography. These maps may help land resource managers and fire officials predict areas of potential fire hazards and study vegetation regrowth areas after fires.
Gully erosion is a worldwide threat with numerous environmental, social, and economic impacts. The purpose of this research is to evaluate the performance and robustness of six machine learning ensemble models based on the decision tree principle: Random Forest (RF), C5.0, XGBoost, treebag, Gradient Boosting Machines (GBMs) and Adaboost, in order to map and predict gully erosion-prone areas in a semi-arid mountain context. The first step was to prepare the inventory data, which consisted of 217 gully points. This database was then randomly subdivided into five percentages of Train/Test (50/50, 60/40, 70/30, 80/20, and 90/10) to assess the stability and robustness of the models. Furthermore, 17 geo-environmental variables were used as potential controlling factors, and several metrics were examined to evaluate the performance of the six models. The results revealed that all of the models used performed well in terms of predicting vulnerability to gully erosion. The C5.0 and RF models had the best prediction performance (AUC = 90.8 and AUC = 90.1, respectively). However, according to the random subdivisions of the database, these models exhibit small but noticeable instability, with high performance for the 80/20% and 70/30% subdivisions. This demonstrates the significance of database refining and the need to test various splitting data in order to ensure efficient and reliable output results.
Assessing and mapping the vulnerability of gully erosion in mountainous and semi-arid areas is a crucial field of research due to the significant environmental degradation observed in such regions. In order to tackle this problem, the present study aims to evaluate the effectiveness of three commonly used machine learning models: Random Forest, Support Vector Machine, and Logistic Regression. Several geographic and environmental factors including topographic, geomorphological, environmental, and hydrologic factors that can contribute to gully erosion were considered as predictor variables of gully erosion susceptibility. Based on an existing differential GPS survey inventory of gully erosion, a total of 191 eroded gullies were spatially randomly split in a 70:30 ratio for use in model calibration and validation, respectively. The models’ performance was assessed by calculating the area under the ROC curve (AUC). The findings indicate that the RF model exhibited the highest performance (AUC = 89%), followed by the SVM (AUC = 87%) and LR (AUC = 87%) models. Furthermore, the results highlight those factors such as NDVI, lithology, drainage, and density were the most influential, as determined by the RF, SVM, and LR methods. This study provides a valuable tool for enhancing the mapping of soil erosion and identifying the most important influencing factors that primarily cause soil deterioration in mountainous and semi-arid regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.