In order to compare the prevalence of atopy and bronchial hyperreactivity among Papua New Guinian (P.N.G.) and Australian populations, skin prick tests and methacholine bronchial challenge tests were performed. A civilian and an army population from each country were examined and those with past or present asthma, recent respiratory tract infection and chronic lung disease were excluded. No statistical difference in the prevalence of atopy was found between the four populations. In the P.N.G. population 40 and 49%, and in the Australian population 27 and 39%, were found to be atopic, without symptoms of past or present allergic disease. The house dust mites were the commonest allergens in all populations. In response to methacholine (0-3 mg), only 6% of subjects had falls in 1 sec forced expiratory volume (FEVi) of more than 12% (upper limit of normal range) and only two were in the asthmatic range. There was no correlation between the degree of bronchial hyperreactivity and atopic status; however, the degree of bronchial hyperreactivity was slightly greater in the New Guinea civilian than in the Australian civilian population. In the absence of asthma, atopic status does not appear to cause increased bronchial reactivity, suggesting that some factor other than atopy must be present for the development of bronchial hyperreactivity characteristic of asthma.
Exposure to fungi can result in a wide range of comorbidities depending on the immune status of the host. Chronic exposure and reactivity to fungi such as Aspergillus fumigatus can result in conditions such as severe asthma with fungal sensitization (SAFS) or allergic bronchopulmonary aspergillosis (ABPA). However, the pathophysiology of SAFS and ABPA are not well understood. Here, we report that the chitinase-like protein YKL-40 is elevated in lung lavage fluid from human asthmatics that are sensitized to fungi. Initial studies demonstrated that mice deficient in the murine ortholog of YKL-40, breast regression protein-39 (BRP-39, chitinase-3-like 1, Chi3l1), were not more susceptible to acute infection with A. fumigatus. However, in an experimental model of fungal-associated allergic airway inflammation (fungal asthma), Chi3l1-/- mice had significantly increased airway hyperresponsiveness (AHR). Surprisingly, increased AHR in Chi3l1-/- mice occurred in the presence of significantly lower type 2 responses (decreased eosinophil numbers and decreased IL-4, IL-5, IL-33, CCL17 and CCL22 levels), although type 1 and type 17 responses were not different. Increased AHR was not associated with differences in Periodic-acid-Schiff staining of lung tissue, differences in the expression of Muc5ac and Clca3, nor differences in lung edema. Bone marrow chimera studies revealed that the presence of BRP-39 in either the hematopoietic or non-hematopoietic compartment was sufficient for controlling AHR during fungal asthma. Collectively, these results indicate that BRP-39 protects against AHR during fungal asthma despite contributing to type 2 inflammation, thus highlighting an unexpected protective role for BRP-39 in allergic fungal asthma.
Development of invasive aspergillosis correlates with impairments in innate immunity. We and others have recently shown that arachidonic acid metabolism pathways, specifically the cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) pathways, participate in the induction of protective innate immune responses during invasive aspergillosis. Based on the high degree of cooperation and interconnection within the eicosanoid network, we hypothesized that 12/15-LOX is also active during invasive aspergillosis. We report in this study that mice deficient in the gene encoding 12/15-LOX (Alox15) are profoundly susceptible to invasive aspergillosis. Decreased survival correlated with increased fungal burden and evidence of increased lung damage. These defects were associated with very early (6 and 12 h) 12/15-LOX-dependent inflammatory cytokine (IL-1a, IL-1b, and TNF-a) and chemokine (CCL3 and CCL4) production. Neutrophil levels in the lung were blunted in the absence of 12/15-LOX, although neutrophil antifungal activity was intact. However, lower neutrophil levels in the lungs of Alox15 2/2 mice were not a result of impaired recruitment or survival; rather, Alox15 2/2 mice demonstrated impaired neutrophil granulopoiesis in the bone marrow intrinsically and after fungal exposure. Employing a lower inoculum to allow for better survival allowed the identification of 12/15-LOX-dependent induction of IL-17A and IL-22. Impaired IL-17A and IL-22 production correlated with reduced invariant NKT cell numbers as well as lower IL-23 levels. Together, these data indicate that 12/15-LOX is a critical player in induction of the earliest aspects of the innate immune response to Aspergillus fumigatus.
Individuals that present with difficult-to-control asthma and sensitivity to one or more fungal species are categorized as a subset of severe asthma patients belonging to a group herein referred to as severe asthma with fungal sensitization (SAFS). We have previously reported the identification of numerous cytokines and chemokines that were elevated in human asthmatics that were sensitized to fungi vs. non-fungal sensitized asthmatics. Here, we show that the unique chemokine CX3CL1 (fractalkine) is elevated in both bronchoalveolar lavage fluid and sputum from human asthmatics sensitized to fungi, implicating an association with CX3CL1 in fungal asthma severity. In an experimental model of fungal-associated allergic airway inflammation, we demonstrate that the absence of CX3CR1 signaling unexpectedly resulted in a profound impairment in lung function. Histological assessment of lung tissue revealed an unrestricted inflammatory response that was subsequently characterized by enhanced levels of neutrophils, eosinophils and inflammatory monocytes. Neutrophilic inflammation correlated with elevated IL-17A, proinflammatory cytokines (TNF-α, IL-1α IL-1β), neutrophil survival factors (G-CSF) and neutrophil-targeting chemokines (CCL3, CCL4). Eosinophilia correlated with elevated type 2 responses (IL-5, IL-13) whereas inflammatory monocyte levels correlated with elevated type 1 responses (IFN-γ, CXCL9) and survival factors (M-CSF). Despite enhanced inflammatory responses, the immunoregulatory cytokine IL-10 and the natural inhibitor of IL-1 signaling, IL-1RA, were significantly elevated rather than impaired. Regulatory T cell levels were unchanged, as were levels of the anti-inflammatory cytokines IL-35 and IL-38. Taken together, the CX3CL1/CX3CR1 axis preserves lung function during fungal-associated allergic airway inflammation through a non-classical immunoregulatory mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.