Watershed recovery from long-term acidification in the northeastern U.S. has been characterized by an increase in the influx of dissolved organic matter (DOM) into surface waters. Increases in carbon quantity and shifts to more aromatic and “colored” OM has impacted downstream lakes by altering thermal stratification, nutrient cycling and food web dynamics. Here, we used fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) to model predominant carbon quality fractions and their seasonal changes within surface waters along landscape positions of Arbutus Lake watershed in the Adirondack region of NY, USA. All DOM components were terrestrial in origin, however their relative fractions varied throughout the watershed. DOM in headwater streams contained high fractions of recalcitrant (~43%) and microbial reprocessed humic-like OM (~33%), sourced from upland forest soils. Wetlands above the lake inlet contributed higher fractions of high molecular weight, plant-like organic matter (~30%), increasing dissolved organic carbon (DOC) concentrations observed at the lake inlet (492.5 mg L−1). At the lake outlet, these terrestrial fractions decreased significantly during summer months leading to a subsequent increase in reprocessed OM likely through increased microbial metabolism and photolysis. Comparisons of specific ultraviolet absorbance between this study and previous studies at Arbutus Lake show that OM draining upland streams (3.1 L·mg C−1 m−1) and wetland (4.1 L·mg C−1 m−1) is now more aromatic and thus more highly colored than conditions a decade ago. These findings provide insight into the emerging role that watersheds recovering from acidification play on downstream water quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.