BackgroundThe prevalence of chronic pain and sleep disturbances substantially increases with age. Pharmacotherapy remains the primary treatment option for these health issues. However, side effects and drug interactions are difficult to control in elderly individuals.AimsThe objective of this study was to assess the feasibility of conducting a randomized sham-controlled trial and to collect preliminary data on the efficacy of transcranial direct current stimulation (tDCS) to reduce pain and improve sleep in older adults suffering from chronic pain.MethodsFourteen elderly individuals (mean age 71±7 years) suffering from chronic pain and sleep complaints were randomized to receive either anodal tDCS, applied over the primary motor cortex (2 mA, 20 minutes), or sham tDCS, for 5 consecutive days. Pain was measured with visual analog scales, pain logbooks and questionnaires, while sleep was assessed with actigraphy, sleep diaries and questionnaires.ResultsThere were no missing data for pain and sleep measures, except for actigraphy, that generated several missing data. Blinding was maintained throughout the study, for both the evaluator and participants. Active but not sham tDCS significantly reduced pain (P<0.05). No change was observed in sleep parameters, in both the active and sham tDCS groups (all P≥0.18).ConclusionThe present study provides guidelines for the implementation of future tDCS studies in larger populations of elderly individuals. M1 anodal tDCS in this population appears to be effective to reduce pain, but not to improve sleep.
The interaction between pain and the motor system is well-known, with past studies showing that pain can alter corticomotor excitability and have deleterious effects on motor learning. The aim of this study was to better understand the cortical mechanisms underlying the interaction between pain and the motor system. Experimental pain was induced on 19 young and healthy participants using capsaicin cream, applied on the middle volar part of the left forearm. The effect of pain on brain activity and on the corticomotor system was assessed with electroencephalography (EEG) and transcranial magnetic stimulation (TMS), respectively. Compared to baseline, resting state brain activity significantly increased after capsaicin application in the central cuneus (theta frequency), left dorsolateral prefrontal cortex (alpha frequency), and left cuneus and right insula (beta frequency). A pain-evoked increase in the right primary motor cortex (M1) activity was also observed (beta frequency), but only among participants who showed a reduction in corticospinal output (as depicted by TMS recruitment curves). These participants further showed greater beta M1-cuneus connectivity than the other participants. These findings indicate that pain-evoked increases in M1 beta power are intimately tied to changes in the corticospinal system, and provide evidence that beta M1-cuneus connectivity is related to the corticomotor alterations induced by pain. The differential pattern of response observed in our participants suggest that the effect of pain on the motor system is variable from on individual to another; an observation that could have important clinical implications for rehabilitation professionals working with pain patients.
High- and low-frequency transcutaneous electrical nerve stimulation is effective for reducing experimental heat pain in young individuals but not in older individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.