Little is known about the immune system of cephalopods, in spite of their many highly derived characters within the molluscan clade, including a vertebrate-like high-pressure closed circulatory system. Further the economic importance of cephalopod fisheries, potential for aquaculture, and use as ecotoxicology models demand a thorough understanding of their immune system. In this study, we present a comprehensive characterization of hemocytes in the common cuttlefish Sepia officinalis. Cytological stainings, electron microscopy- and flow cytometry-observations highlight a single granulocyte population with various densities of eosinophilic granules and unstained vesicles. These hemocytes contain acid phosphatase-, lysozyme- and proPO system enzymes, and have high activity in bead phagocytosis assays. Interestingly, bead pre-incubation in plasma results in time-dependent aggregation perhaps resulting from hemocyanin-coating, and decrease in phagocytosis. This study provides the basis for understanding hemocyte-mediated immunity in the common cuttlefish, and essential background for future studies on cephalopod immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.