[1] The Dead Sea Transform is a major strike-slip fault bounding the Arabia plate and the Sinai subplate. On the basis of two GPS campaign measurements, 6 years apart, at 17 sites distributed in Israel and Jordan, complemented by Israeli permanent stations, we compute the present-day deformation across the southern segment of the Dead Sea Transform, the Wadi Araba fault. Elastic locked-fault modeling of fault-parallel velocities provides a slip rate of 4.9 ± 1.4 mm/a and a best fit locking depth of $12 km. This slip rate is slightly higher than previous results based only on Israeli permanent GPS stations data, which are located west of the fault. It is in good agreement with results based on offset geomorphologic and geologic features that average longer periods of time (10 ka to 1 Ma). Projection in ITRF2000 reference frame allows using our data, combined with results published earlier, to further study the kinematics between Arabia, Nubia, and Sinai. Systematic combination of Euler poles available in the literature, in addition to our new set of data, shows that a wide range of Arabia-Sinai pole positions and angular velocities predict reasonable slip rate on the Dead Sea fault. We highlight uncertainties of calculating such poles due to the small size of the blocks and their slow relative motion along a short and almost straight strand of the transform fault, which lead to a large trade-off between pole location and angular velocity.
[1] Two sites located along the Wadi Araba Fault (WAF) segment of the Dead Sea Fault are targeted for tectonic-morphological analysis. 10 Be cosmogenic radionuclide (CRN) dating of embedded cobbles is used to constrain the age of offset alluvial surfaces. At the first site a 48 ± 7 m offset alluvial fan, for which 10 Be CRN model ages average 11.1 ± 4.3 ka, yield a slip rate of 5.4 ± 2.7 mm/a, with conservative bounds of 1.3-16.4 mm/a. At the second site the scattered distributions of the 10 Be CRN ages from an offset bajada attest to the complex processes involved in sediment transport and emplacement. There, two offsets were identified. The 160 ± 8 m offset of an incised alluvial fan dated at 37 ± 5 ka shows a slip rate of 4.5 ± 0.9 mm/a, with a conservative minimum value of 3.2 mm/a. A larger offset, 626 ± 37 m, is derived from a prominent channel incised into the bajada. Cobbles from the bajada surface have ages from 33 to 141 ka, with a mean of 87 ± 26 ka. A slip rate of 8.1 ± 2.9 mm/a is derived from the mean age, with conservative bounds of 3.8-22.1 mm/a. These results and other published slip rates along the linear WAF segment, from GPS to geological time scales, lack the resolution to fully resolve the question of temporal variations versus consistency of the fault slip rate of the WAF. Yet, given the uncertainties, they are not inconsistent with each other.
[1] The Dead Sea strike-slip fault accommodates the northward motion of Arabia relative to Sinai at a rate of $5 mm/yr. The southern segment of the fault, the Wadi Araba fault, runs along a valley blanketed in Quaternary sediments. We first focused on understanding the relative and absolute timing of emplacement of the alluvial surfaces. We then determined the probable source of the sediments before assessing their lateral offset to constrain the late Pleistocene fault slip rate. Seven successive morphostratigraphic levels were identified. At two sites, we recognized an alluvial sequence of five to seven successive levels with ages getting younger northward, a pattern consistent with the western block moving southward relative to two fixed feeding channels located to the east. Surface samples were collected for 10 Be cosmogenic radionuclide dating. Fans F3 and F5 were found to be synchronous from site to site, at 102 AE 26 ka and 324 AE 22 ka, respectively, while F4 could be dated at 163 AE 19 ka at one site only. These are minimum ages, assuming no erosion of the alluvial surfaces. At least two of these periods are correlated with wet periods that are regionally well documented. Further analyses of tectonic offsets are affected in most cases by large uncertainties due to the configuration of the sites. They indicate maximum offsets of $5.5 km for the oldest, possibly $1 Ma old, surfaces. They lead to bracketing of the fault slip rate between 5 and 12 mm/yr, with preferred values of 5-7 mm/yr, for the last 300 ka.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.