Reservoir parks are the main place of storage of petroleum products. There has been a tendency transition to the use of larger tanks in recent years, which is economically justified. However, it is leads to fire risk increase to accumulate large quantities of petroleum products. Tank fire is one of the most dangerous emergency event, which can lead not only to significant material damage but also to ecological human losses in case of spreading of fire to other tanks. To ensure safety and test the bearing capacity in these conditions determination of the stress-strain state in such tanks must be performed taking into account the temperature load. If there is an initial crack in the tank wall the assessment of crack resistance should be performed. In a previous work the authors determined the stress intensity factor (SIF) distribution along the semi-elliptical crack front in the RVS-5000 tank under hydrostatic pressure. The estimation of a stress-strain state of a steel vertical tank with an initial semi-elliptical crack under the thermal loading is performed in this article. It is suppoused that the part of wall of the tank, located closest to the fire epicenter, is heated unevenly in height: from 300 degrees at the top to 200 degrees at the bottom. On the other part of the tank the temperature reaches 70 degrees. The temperature within wall thickness is considered constant. Given the asymmetric nature of the temperature distribution, a discrete model was developed for the entire tank. After determining the stress-strained state in the whole tank under hydrostatic pressure and temperature load, a fragment with a semi-elliptical crack was calculated separately. The stresses determined from the calculation of the whole tank are used like an external load, applied on fragment boundaries. The difference of results of direct and energetic method of SIF calculation are in the range of 5%. Taking into account the temperature loading leads to an increase in the SIF values by about 20 % in comparison to the results of the calculation only under hydrostatic pressure.
The problem of propagation of spherical waves in a thermoelastic medium is considered. Two approaches to taking into account the mutual influence of dynamic fields of deformations and temperature are compared. A generalized model of coupled thermoelasticity is used for calculation in the first approach and the second one is based on the ratio of the theory of thermal stresses, which are neglecting the change of temperature distribution under mechanical loads action. The amplitude-frequency characteristics of radial displacements and normal tangential stresses at the boundary of a spherical cavity being under action of load, which changes according to the harmonic law in time, are obtained. The correspondence between the value of the coupling parameter and the results error caused by the use of the simplified model of field interaction is traced. Wave processes in solids of modern polymeric materials, such as polyvinyl butyral and polyvinyl butyralfurfural belonging to the family of polyvinyl acetals, which have a fairly high coefficient of field connectivity of 0.18 and 0.41, respectively, are considered. It is shown that the use of a simplified model of coupled thermoelasticity for the calculation of structure of such materials leads to unacceptably large differences in the results. Thus, the maximum values of the stress-strained state parameters obtained using the generalized model were 18% higher than in the case of the application of the theory of temperature stresses for polyvinyl butyral. The results difference obtained using this two approaches at some frequencies exceeded 30% for the polyvinyl butyralfurfural medium. It is concluded that the simplified model of the interaction of deformation and temperature fields can be a rough approximation in the analysis of the dynamic reaction of massive structural elements made of such materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.