Treatment of [HB(3,5-(CF3)2Pz)3]Na(THF) with CF3SO3Cu followed by 1-azidoadamantane affords [HB(3,5-(CF3)2Pz)3]CuNNN(1-Ad) in 65% yield. The solid state structure shows that the copper atom is coordinated to the terminal nitrogen atom (NT) of the azidoadamantane ligand. The related silver(I) adduct can be prepared in 80% yield by the treatment of [HB(3,5-(CF3)2Pz)3]Ag(THF) with 1-azidoadamantane. However, [HB(3,5-(CF3)2Pz)3]AgN(1-Ad)NN shows a different bonding mode where the silver atom coordinates to the alkylated nitrogen atom (NA) of the azidoadamantane ligand. Asymmetric stretching bands of the azido group for copper and silver adducts appear at 2143 and 2120 cm-1, respectively. Theoretical investigation shows that steric effects do not play a dominant role in determining the bonding mode of the azide ligand in these two metal complexes. Although the copper(I) ion affinity for the two coordinating sites NT and NA is nearly identical, copper-azide back-bonding interactions favor the copper-NT mode of bonding over the copper-NA mode. Silver (a very poor back-bonding metal) prefers the NA site for coordination. The NA site has a significantly higher proton affinity and slightly higher sodium ion affinity. Important structural parameters for [HB(3,5-(CF3)2Pz)3]CuNNN(1-Ad) and [HB(3,5-(CF3)2Pz)3]AgN(1-Ad)NN are as follows: Cu-NT 1.861(3) A, NT-N 1.136(4) A, N-NA 1.219(4) A, NT-N-NA 173.1(3) degrees; Ag-NA 2.220(5) A, NT-N 1.143(12) A, N-NA 1.227(10) A, NT-N-NA 176.8(12) degrees. Overall, the azidoadamantane ligand does not undergo any significant changes upon coordination to Cu(I) or Ag(I) ions.
Treatment of THF solutions of [(n-Pr)2ATI]MCl (where [(n-Pr)2ATI]- = N-(n-propyl)-2-(n-propylamino)troponiminate; M = Ge and Sn) with sodium azide affords the compounds [(n-Pr)2ATI]MN3 in excellent yield. X-ray analyses revealed that these Ge(II) and Sn(II) compounds feature linear azide moieties and planar heterobicyclic C7N2M ring systems. Germanium and tin atoms adopt a pyramidal geometry. IR spectra of [(n-Pr)2ATI]GeN3 and [(n-Pr)2ATI]SnN3 display a nu asym(N3) band at 2048 and 2039 cm-1, respectively. DFT calculations on the corresponding methyl-substituted species demonstrate that the geometrical and electronic structure of these two species are very similar, and the dominant canonical form of the metal-azide moiety is M-N-N identical to N. The tin system is, as expected, slightly more ionic. A comparative CASSCF/DFT study on the model system H-Sn-N3 illustrates that the DFT approach is viable for the calculation of the structures of these species.
New and more accurate energy profiles for interstitial muonium in diamond clusters (C10H16 to C30H40) have been determined by ab initio and approximate ab initio calculations, and have been critically compared to previous theoretical work. The energy profiles are shown to be extremely sensitive to the position of the surface atoms used to terminate the cluster. It is established that if the equilibrium carbon-hydrogen bond length is used to terminate the cluster the energy profiles converge rapidly with cluster size, but the use of any other value for d C -n leads to qualitatively incorrect energy profiles for small clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.