Objective We previously examined the expression of specific C-terminal μ-opioid receptor (MOR) splice variants in human central nervous system cell types and HIV-infected brain tissue from subjects with neurocognitive impairment ± HIV encephalitis (HIVE). In the present study, we examined the N-terminal splice variant MOR-1K which mediates excitatory cellular signaling. Methods and Results We found segregation of expression ranging from undetectable to seemingly exclusive across nervous system cell types compared to the pool of C-terminal MOR splice variants using RT-PCR. Expression of MOR-1K mRNA was also increased in HIV-infected subjects with combined neurocognitive impairment and HIVE compared to the other groups. MOR-1K expression correlated with the level of subject neurocognitive impairment whereas the pool of C-terminal MOR splice variants did not. HIVE was also associated with increased expression of the inflammatory mediators MCP-1, MCP-2, and RANTES, but not the host HIV co-receptors CXCR4 and CCR5 or the CD4 receptor, using qRT-PCR. Network analysis of microarray data from these same subjects revealed filamin A (FLNA) as a possible interaction partner with MOR-1K, and FLNA gene expression was also found to be upregulated in HIVE using qRT-PCR. Overexpression of filamin A in HEK293 cells redistributed MOR-1K from intracellular compartments to the cell surface. Conclusion These results suggest that HIVE, and neurocognitive impairment depending on its severity, are associated with enhanced MOR-1K signaling through both increased expression and trafficking to the cell surface, which may alter the contribution of MOR receptor isoforms and exacerbate the effects of MOR activation in neuroAIDS.
The blood brain barrier (BBB) plays a critical role in the normal physiology of the central nervous system (CNS) by regulating what crosses from the periphery into the brain. Damage to the BBB or alterations in transport systems may mediate the pathogenesis of many CNS diseases, including HIV-associated CNS dysfunction. HIV-1 infection can result in neuropathologic changes in about one half of infected individuals and also can result in damage to the BBB. HIV-1 and the HIV-1 viral proteins, Tat and gp120, cause alterations in the integrity and function of the BBB through both paracellular and transcellular mechanisms. The current review discusses HIV and viral protein-mediated injury to the BBB with a focus on the effects on tight junction proteins, barrier permeability, and drug efflux proteins.
Aging is associated with reduced liver function that may increase the risk for adverse drug reactions in older adults. We hypothesized that age-related changes to epigenetic regulation of genes involved in drug metabolism may contribute to this effect. We reviewed published epigenome-wide studies of human blood and identified the cytochrome P450 2E1 (CYP2E1) gene as a top locus exhibiting epigenetic changes with age. To investigate potential functional changes with age in the liver, the primary organ of drug metabolism, we obtained liver tissue from mice aged 4-32 months from the National Institute on Aging. We assayed global DNA methylation (5-methylcytosine, 5mC), hydroxymethylation (5hydroxymethylcytosine, 5hmC), and locus-specific 5mC and histone acetylation changes around mouse Cyp2e1. The mouse livers exhibit significant global decreases in 5mC and 5hmC with age. Furthermore, 5mC significantly increased with age at two regulatory regions of Cyp2e1 in tandem with decreases in its gene and protein expressions. H3K9ac levels also changed with age at both regulatory regions of Cyp2e1 investigated, while H3K27ac did not. To test if these epigenetic changes are associated with varying rates of drug metabolism, we assayed clearance of the CYP2E1-specific probe drug chlorzoxazone in microsome extracts from the same livers. CYP2E1 intrinsic clearance is associated with DNA methylation and H3K9ac levels at the Cyp2e1 locus but not with chronological age. This suggests that age-related epigenetic changes may influence rates of hepatic drug metabolism. In the future, epigenetic biomarkers could prove useful to guide dosing regimens in older adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.