The Heisenberg uncertainty principle sets a lower bound on the noise in a force measurement based on continuously detecting a mechanical oscillator's position. This bound, the standard quantum limit, can be reached when the oscillator subjected to the force is unperturbed by its environment and when measurement imprecision from photon shot noise is balanced against disturbance from measurement back-action. We applied an external force to the center-of-mass motion of an ultracold atom cloud in a high-finesse optical cavity and measured the resulting motion optically. When the driving force is resonant with the cloud's oscillation frequency, we achieve a sensitivity that is a factor of 4 above the standard quantum limit and consistent with theoretical predictions given the atoms' residual thermal disturbance and the photodetection quantum efficiency.
We generate spin squeezed ground states in an atomic spin-1 Bose-Einstein condensate tuned near the quantum critical point between the polar and ferromagnetic quantum phases of the interacting spin ensemble. In contrast to typical non-equilibrium methods for preparing atomic squeezed states by quenching through a quantum phase transition, squeezed ground states are time-stationary and remain squeezed for the lifetime of the condensate. A squeezed ground state with a metrological improvement up to 6-8 dB and a constant squeezing angle maintained over 2 s is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.